Условие
Точка P(2; -1; 1) служит основанием перпендикуляра, опущенного из начала координат на плоскость. Составить уравнение этой плоскости.
Решение
Вектор vector-нормальный вектор данной плоскости
vector=(2;-1;1)
Уравнение плоскости, проходящей через точку Р(х_(о);y_(o);z_(o)) c нормальным вектором vector=(A;B;C> имеет вид:
A*(x-x_(o))+B*(y-y_(o))+C*(z-z_(o))=0
Подставляем координаты точки Р и вектора vector в это уравнение
2*(х-2)-(y-(-1))+(z-1)=0
2x-y+z-6=0
О т в е т. 2x-y+z-6=0
Видео:Уравнение плоскости через 3 точкиСкачать

Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор
§ 38. Общее уравнение плоскости. Уравнение плоскости,
проходящей через данную точку и имеющей данный
В декартовых координатах каждая плоскость определяется уравнением первой степени и каждое уравнение первой степени определяет плоскость.
Всякий (не равный нулю) вектор, перпендикулярный к данной плоскости, называется её нормальным вектором. Уравнение
А(х — xо) + В(у — yо) + С(z — zz0) = 0 (1)
определяет плоскость, проходящую через точку М0(х0; у0; z0) и имеющую нормальный вектор п = .
Раскрывая в уравнении (1) скобки и обозначая число —Ах0 — Ву0,—Сz0 буквой D представим его в виде:
Ах + By + Cz + D = 0.
Это уравнение называется общим уравнением плоскости.
913. Составить уравнение плоскости, которая проходит через точку M1(2; 1; —1) и имеет нормальный вектор n =.
914. Составить уравнение плоскости, которая проходит через начало координат и имеет нормальный вектор п = .
915. Точка Р (2; —1; —1) служит основанием перпендикуляра, опущенного из начала координат на плоскость. Составить уравнение этой плоскости.
916. Даны две точки М1(3; —1; 2) и М2(4; —2; —1). Составить уравнение плоскости, проходящей через точку М1 перпендикулярно к вектору 
917. Составить уравнение плоскости, проходящей через точку M1(3; 4; —5) параллельно двум векторам a1 = и a2 = .
918. Доказать, что уравнение плоскости, проходящей через точку М0(х0;у0;z0) параллельно двум векторам
может быть представлено в следующем виде:

919. Составить уравнение плоскости, проходящей через точки M1(2; — 1; 3) и М2(3; 1; 2) параллельно вектору а = .
920. Доказать, что уравнение плоскости, проходящей через точки М1(х1;у1;z1) и М2(х2;у2;z2) параллельно вектору
может быть представлено в следующем виде:

921. Составить уравнение плоскости, проходящей через три точки: М1 (3; — 1; 2), М2 (4; — 1; — 1) и М3 (2; 0; 2).
922. Доказать, что уравнение плоскости, проходящей через три точки:
М1(х1;у1;z1) М2(х2;у2;z2) М3(х3;у3;z3)
может быть представлено в следующем виде:

923. Определить координаты какого-нибудь нормального вектора каждой из следующих плоскостей. В каждом случае написать общее выражение координат произвольного нормального вектора:
1) 2х—у — 2z + 5 = 0; 2) х + 5у — z = 0;
3) 3х —2у —7 = 0; 4) 5у —3z = 0; 5)х + 2 = 0;
924. Установить, какие из следующих пар уравнений определяют параллельные плоскости:
1) 2х — 3у + 5z — 7 = 0, 2х — 3у + 5z + 3 = 0;
2) 4х+2у —4z + 5 = 0, 2х + у + 2z—1=0;
3) х—3z +2 = 0, 2х —6z — 7 = 0.
925. Установить, какие из следующих пар уравнений определяют перпендикулярные плоскости:
1) 3х—у — 2z — 5 = 0, х + 9у — 32 + 2 = 0;
2) 2х + 3у —2 —3 = 0, х — у — z + 5 = 0;
3) 2х —5у + z = 0, х + 22 —3 = 0.
926. Определить, при каких значениях l и m следующие пары уравнений будут определять параллельные плоскости:
1) 2х + lу + 3z — 5 = 0, mх —6у —6z + 2 = 0;
2) 3х— у + lz — 9 = 0, 2х + mу + 2z —3 = 0;
3) mx + 3у — 2z — 1=0, 2х— 5у — lz = 0.
927. Определить, при каком значении l следующие пары уравнений будут определять перпендикулярные плоскости:
1) 3х — 5у+ lz — 3 = 0, х + 3у + 2z + 5 = 0;
2) 5х + у — 32 — 2 = 0, 2х + lу — 3z + 1 = 0;
3) 7х — 2у — 2 = 0, lх + у — 3z — 1 = 0.
928. Определить двугранные углы, образованные пересечением следующих пар плоскостей:
1) х — у 

2) 3у — z = 0, 2у + z = 0;
3) 6х + 3у — 2z = 0, х + 2у + 6z — 12 = 0;
4) х + 2у + 2z — 3 = 0, 16х+12у — 15z — 1 = 0.
929. Составить уравнение плоскости, которая проходит через начало координат параллельно плоскости 5х — 3у + 2z — 3 = 0.
930. Составить уравнение плоскости, которая проходит через точку M1(3; —2; —7) параллельно плоскости 2х — 3z + 5 = 0.
931. Составить уравнение плоскости, которая проходит через начало координат перпендикулярно к двум плоскостям:
2х — у + 3z — 1=0, х + 2у + z = 0.
932. Составить уравнение плоскости, которая проходит через точку M1(2; —1; 1) перпендикулярно к двум плоскостям:
2х — z + 1 = 0, у = 0.
933. Доказать, что уравнение плоскости, проходящей через точку М0(х0; у0; z0) перпендикулярно к плоскостям
А1х + В1у + С1z + D1 = 0, A2x + В2у + С2z + D2 = 0,
может быть представлено в следующем виде:
934. Составить уравнение плоскости, которая проходит через две точки М1(1; —1; —2) и M2(3; 1; 1) перпендикулярно к плоскости х — 2у + 3z — 5 = 0.
935. Доказать, что уравнение плоскости, проходящей через две точки М1(х1; y1; z1 ) и M2(x2; у2; z2) перпендикулярно к плоскости
Ax + By + C2 + D = 0,
может быть представлено в следующем виде:

936. Установить, что три плоскости х — 2у + z— 7 = 0, 2х + у — z + 2 = 0, х—3y+2z—11 = 0 имеют одну общую точку, и вычислить еe координаты.
937. Доказать, что три плоскости 7х + 4y + 7z + 1 = 0, 2х — у — 2 + 2 = 0, х + 2у + 32 — 1 = 0 проходят через одну прямую.
938. Доказать, что три плоскости 2х — у + 3z— 5 = 0, 3х + у + 2z — 1 = 0, 4х + 3у + z + 2 = 0 пересекаются по трём различным параллельным прямым.
939. Определить, при каких значениях а и b плоскости 2х — у + 3z — 1 = 0, х + 2у — z + b = 0, х + ау —6z + 10 = 0:
1) имеют одну общую точку;
2) проходят через одну прямую;
3) пересекаются по трём различным параллельным прямым.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Курсовая, контрольная работа. Примеры выполнения
Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.
Решение. По условию задачи вектор ОА(1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3 × 3+D = 0 Þ D = -11. Итак, x-y+3z-11=0.
Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y-z-7=0 угол 60о.
Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями
= cos 60о, где m = A/B.
Решая квадратное уравнение 3m2 + 8m — 3 = 0, находим его корни m1 = 1/3, m2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.
Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y — 2z + 5 = 0.
Решение. Канонические уравнения прямой имеют вид:
где m, n, р — координаты направляющего вектора прямой, x1, y1, z1 — координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y — 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x1, y1, z1 ), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n1(5,1,1) и n2(2,3,-2). Тогда
n = [n1, n2] = = (-2-3)i — (-10-2)j + (15-2)k = -5i+12j+13k. Вычислить объем единичного шара Геометрические приложения двойных интегралов
Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 = (z — 1)/13.
Пример 1.18. В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).
Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:
(2u +v)x + (- u + v)y + (5u +2v)z — 3u + v = 0.
Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:
(2u+v) × 1 + ( -u + v) × 0 + (5u + 2v ) × 1 -3u + v =0, или v = — u.
Тогда уравнение плоскости, содержащей M, найдем, подставив v = — u в уравнение пучка:
u(2x-y +5z — 3) — u (x + y +2z +1) = 0.
Т.к. u ¹ 0 ( иначе v=0, а это противоречит определению пучка ), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:
(2u+ v) × 1 + (v — u) × (-2) + (5u +2v) × 3 = 0, или v = — 19/5u.
Значит, уравнение второй плоскости имеет вид:
u(2x -y+5z — 3) — 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.
Пусть даны две прямые
с направляющими векторами 








Второй угол равен 
Параллельность (перпендикулярность) двух прямых 











Пример 1. Найти область определения функции

Область определения функции находим из решения следующей системы неравенств:
Таким образом, 
Иногда функция задается с помощью нескольких формул, например,

Аналитический способ задания функции удобен тем, что значения функции можно вычислять при любых значениях аргумента. По заданному аналитическому выражению функции удобно изучать ее свойства. Однако недостатком этого способа задания функции является его малая наглядность.
2) Табличный способ. При этом способе задания функции рядом с числовым значением аргумента выписывается соответствующее значение функции. Так, хорошо известны, например, таблицы функций 







Недостатком табличного способа задания функции является то, что в таблице могут быть указаны не все, а лишь отдельные значения аргумента и функции. Особенности изменения функции при этом могут быть искажены или утрачены.
3) Графический способ. Этот способ задания функции помимо геометрического изображения функции, заданной уравнением, удобен тогда, когда функцию трудно задать аналитически. Задать функцию графически – это значит построить ее график. Это часто делают самопишущие приборы. Например, в медицине элекрокардиограф вычерчивает электрокардиограмму – кривую изменения электрических импульсов сердечной мышцы.
Графиком числовой функции 

Не всякое множество точек координатной плоскости, даже не всякая линия может служить графиком функции. Линия только в том случае задает функцию, если любая прямая, параллельная оси 
Пример 2. График параболы, заданной уравнением 







График функции (12.3) имеет вид, изображенный на рис. 12.2.
4) Словесный способ. При этом способе функция может быть задана с помощью описания соответствия. Поставим в соответствие каждому числу 




Другой пример: каждому рациональному числу поставим в соответствие число 1, а каждому иррациональному – число 0. Полученная функция называется функцией Дирихле
Рассмотрим более подробно некоторые специальные аналитические способы задания функции.
Функция называется явной, если она задана формулой , в которой правая часть не содержит 

Функция называется неявной, если она задана уравнением 



Сложная функция. Если функция 










Из определения следует, что сложная функция может быть представлена в виде цепочки простых функций: 







🔥 Видео
1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

Уравнение плоскости. 11 класс.Скачать

Видеоурок "Уравнение плоскости по трем точкам"Скачать

Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Уравнение плоскости через точку и нормальСкачать

Задача 8. Написать уравнение плоскости, проходящей через точку перпендикулярно вектору.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Уравнение плоскости. Практика. Урок 5. Геометрия 11 классСкачать

3. Частные случаи общего уравнения плоскости Неполные уравнения плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскостиСкачать

Составьте уравнение плоскости, проходящей через ось Оу и точку M (3;2;4).Скачать

12. Уравнения прямой в пространстве Решение задачСкачать

Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать

10 класс, 19 урок, Расстояние от точки до плоскостиСкачать

7 класс, 16 урок, Перпендикуляр к прямойСкачать

Видеоурок "Уравнение плоскости в отрезках"Скачать

Расстояние от точки до плоскости Проведение перпендикуляраСкачать









