Составить уравнение элипса,фокусы которого лежат на оси абсцисс,симметрично условно к началу координат,зная,что его малая ось одинакова 10,а ексцентриситет равен 12/13.
- Леонид Ханиса
- Математика 2019-01-28 10:10:17 1 1
Эллипсом величается геометрическое место точек, для которых сумма расстояний до 2-ух фиксированных точек плоскости, называемых трюками, есть постоянная величина, большая, чем расстояние меж фокусами. Постоянную сумму расстояний случайной точки эллипса до фокусов принято означать через 2а. Фокусы эллипса обозначают знаками и , расстояние меж ними — через 2с. По определению эллипса либо .
Пусть дан эллипс. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данного эллипса размещаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение данного эллипса имеет вид
Видео:Эллипс (часть 8). Решение задач. Высшая математика.Скачать
Составить уравнение эллипса фокусы которого имеют координаты
Определение. Эллипс – это геометрическая фигура, которая ограничена кривой, заданной уравнением .
Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Чертеж фигуры эллипс
с – половина расстояния между фокусами;
a – большая полуось;
b – малая полуось.
Теорема. Фокусное расстояние и полуоси связаны соотношением:
Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2*(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r1 + r 2 = a – c + a + c. Т.к. по определению сумма r1 + r 2 – постоянная величина, то , приравнивая, получаем:
Видео:ЭллипсСкачать
Эксцентриситет фигуры эллипс
Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .
Если a = b ( c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.
Если для точки М(х 1 , у 1 ) выполняется условие: , то она находится внутри эллипса, а если , то точка находится вне его.
Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :
Доказательство. Выше было показано, что r1 + r2 = 2 a . Кроме того, из геометрических соображений можно записать:
После возведения в квадрат и приведения подобных слагаемых:
Аналогично доказывается, что r2 = a + ex . Теорема доказана.
Видео:165. Найти фокусы и эксцентриситет эллипса.Скачать
Директрисы фигуры эллипс
С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:
x = a / e ; x = – a / e .
Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.
Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением :
Координаты нижней вершины: x = 0; y 2 = 16; y = -4.
Координаты левого фокуса: c 2 = a 2 – b 2 = 25 – 16 = 9; c = 3; F2 (-3; 0).
Уравнение прямой, проходящей через две точки:
Пример. Составить уравнение границы фигуры эллипс, если его фокусы F 1 (0; 0), F2 (1; 1), большая ось равна 2.
Уравнение границы имеет вид: . Расстояние между фокусами:
2 c = , таким образом, a 2 – b 2 = c 2 = 1/2
по условию 2а = 2, следовательно а = 1, b =
Итого искомое уравнение имеет вид: .
УСЛОВИЕ:
Составить уравнение эллипса, зная, что:
а) его большая полуось равна 10 и фокусы суть F1(-6;0), F2(10;0)
б) а=5, F1(-3;5), F2(3;5)
2.
Составить каноническое уравнение эллипса, фокусы которого расположены на оси Ох, симметрично относительно начала координат, если:
а)задана точка M1(2 корня из 3;1) эллипса и его малая полуось равна 2
б) заданы две точки эллипса M1(0;7) и M2(8;0)
в)расстояние между фокусами равно 24 и большая ось равна 26
г) экцентриситет равен 7/25 и заданы фокусы (+-7;0)
Добавил maryney23 , просмотры: ☺ 3749 ⌚ 2018-12-29 21:53:45. предмет не задан класс не задан класс
Решения пользователей
РЕШЕНИЕ ОТ sova
M- середина F_(1)F_(2)
x_(M)=(-6+10)/2=2
y_(M)=0
M(2;0)
Прямая x=2 -оcь симметрии эллипса
О т в е т.(x-2)^2/(10^2)+(y^2/6^2)=1
б) F_(1)(-3;5); F_(2)=(3;5)⇒
c=3
Прямая
y=5 – ось симметрии эллипса
О т в е т.(x^2/5^2)+((y-5)^2/4^2)=1
2. Если фокусы эллипса расположены на оси Ох, симметрично относительно начала координат, то каноническое уравнение эллипса имеет вид
(x^2/a^2)+(y^2/b^2)=1
а)
b=2
(x^2/a^2)+(y^2/4)=1
Подставляем координаты точки M_(1):
(12/a^2)+(1/4)=1
(12/a^2)=3/4
a^2=16
О т в е т. (x^2/4^2)+(y^2/2^2)=1
О т в е т. (x^2/8^2)+(y^2/7^2)=1
в)
2с=24 ⇒ с=12
2а=26 ⇒ а=13
b^2=a^2-с^2=13^2-12^2=169-144=25=5^2
О т в е т. (x^2/13^2)+(y^2/5^2)=1
г)
F( ± c;0) ⇒ c=7
ε=с/а
c/a=7/25
a=25
b^2=a^2-c^2=625-49=576=24^2
О т в е т. (x^2/25^2)+(y^2/24^2)=1
Консультации и решение задач по алгебре, геометрии, анализу, дискретной математике.
Лучшие эксперты в этом разделе
Коцюрбенко Алексей Владимирович Статус: Модератор Рейтинг: 1702 | epimkin Статус: Бакалавр Рейтинг: 385 | Roman Chaplinsky / Химик CH Статус: Модератор Рейтинг: 372 |
Перейти к консультации №: |
здравствуйте помогите пожалуйста.
Составить уравнение эллипса, фокусы которого имеют координаты (0;4√2) и (0;- 4√2) , а малая ось равна 14. спасибо за помощь
Состояние: Консультация закрыта
Здравствуйте, анисимова юлия александровна!
Уравнение эллипса имеет вид
x²/a² + y²/b² = 1 (если фокусы расположены на оси Ox)
или
x²/b² + y²/a² = 1 (если фокусы расположены на оси Oy).
У нас второй случай.
Фокусы эллипса имеют координаты (0; 4√2) и (0; -4√2), значит, c = 4√2.
Малая ось равна 14, т.е. b = 14.
У эллипса
a² = b² + c².
Значит,
a² = 196 + 32 = 228.
Ответ: x²/196 + y²/228 = 1.
Консультировал: Агапов Марсель Дата отправки: 15.01.2008, 22:17 |
0
Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.
💡 Видео
Видеоурок "Эллипс"Скачать
§28 Эксцентриситет эллипсаСкачать
Фокусы эллипсаСкачать
Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков АлександрСкачать
Фокусы гиперболыСкачать
Видеоурок "Гипербола"Скачать
11 класс, 52 урок, ЭллипсСкачать
Уравнение эллипсаСкачать
Неполное уравнение второго порядка. Эллипс, гипербола. ЗадачиСкачать
213. Фокус и директриса параболы.Скачать
Фокусы эллипса лежат на оси абсциссСкачать
Овчинников А. В. - Аналитическая геометрия - Эллипс, гипербола, параболаСкачать
Лекция 31.1. Кривые второго порядка. ЭллипсСкачать
§18 Каноническое уравнение эллипсаСкачать
169. Фокальные расстояния точки эллипса.Скачать
Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать