- Глава 20. Парабола
- Парабола — определение и вычисление с примерами решения
- Уравнение параболоида вращения
- 2.5 Парабола
- Составить простейшее уравнение параболы если известно что ее фокус находится в точке пересечения прямой
- Глава 20. Парабола
- Парабола — определение и вычисление с примерами решения
- Уравнение параболоида вращения
- 2.5 Парабола
- 📽️ Видео
Видео:Фокус и директриса параболы 1Скачать
Глава 20. Парабола
Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F , расстояние от фокуса до директрисы — буквой р. Число р называется параметром параболы.
Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением
(1)
Уравнение (1) называется каноническим уравнением параболы. В этой же системе координат директриса данной параболы имеет уравнение
.
Фокальный радиус произвольной точки М( x; y ) параболы (то есть длина отрезка F(M ) может быть вычислен по формуле
.
Парабола имеет одну ось симметрии, называемую осью параболы, с которой она пересекается в единственной точке. Точка пересечения параболы с осью называется ее вершиной. При указанном выше выборе координатной системы ось параолы совмещена с осью абсцисс, вершина находится в начале координат, вся парабола лежит в правой полуплоскости.
Если координатная система выбрана так, что ось абсцисс совмещена с осью параболы, начало координат — с вершиной, но парабола лежит в левой полуплоскости (рис.), то ее уравнение будет иметь вид
(2)
В случае, когда начало координат находится в вершине, а с осью совмещена ось ординат, парабола будет иметь уравнение
(3)
если она лежит в верхней полуплоскости (рис.), и
(4)
если в нижней полуплоскости (рис.)
Каждое из уравнений параболы (2), (3), (4), как и уравнение (1), называется каноническим.
Видео:Известно, что парабола проходит через точку В(-1; -1/40, и её вершина находится в начале координатСкачать
Парабола — определение и вычисление с примерами решения
Парабола:
Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.
Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы
Рис. 34. Парабола, (уравнение директрисы.
Возведем обе части уравнения в квадрат
Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: (а также аналогичные ему, см. Рис. 35а и Рис. 356).
Рис. 35а. Параболы и их уравнения.
Рис. 356. Параболы и их уравнения.
Найдем координаты точек пересечения параболы с координатными осями:
- — точка пересечения параболы с осью абсцисс;
- — точка пересечения параболы с осью ординат.
Определение: Точка О(0; 0) называется вершиной параболы.
Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка следовательно, парабола симметрична относительно оси абсцисс.
Пример:
Дано уравнение параболы Определить координаты фокуса параболы и составить уравнение параболы.
Решение:
Так как из уравнения параболы следует, что следовательно, Таким образом, фокус этой параболы лежит в точке а уравнение директрисы имеет вид
Пример:
Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы до её асимптоты.
Решение:
Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.
Гипербола:
Следовательно, действительная полуось гиперболы а мнимая полуось — Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Итак, Вычислим расстояние от фокуса до асимптоты которое равно параметру р:
Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид:
Пример:
Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Написать уравнение директрисы.
Решение:
Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс:
Следовательно, большая полуось эллипса а малая полуось Так как , то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Так как фокус параболы совпадает с одним из фокусов или эллипса, то параметр р найдем из равенства уравнение параболы имеет вид Директриса определяется уравнением
Видео:213. Фокус и директриса параболы.Скачать
Уравнение параболоида вращения
Пусть вертикальная парабола
расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).
Для вывода уравнения поверхности рассмотрим произвольную точку параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).
Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем
Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения
Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Многогранник
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
- Четырехугольник
- Многогранники
- Окружность
- Эллипс
- Гипербола
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
2.5 Парабола
Парабола Есть геометрическое место точек на плоскости, равноотстоящих от данной точки, называемой фокусом, и данной прямой, называемой директрисой.
Выберем систему координат таким образом (рисунок 2.7): за ось ОХ примем прямую, проходящую через фокус F перпендикулярно к директрисе, за положительное направление примем направление от директрисы к фокусу. За начало координат примем середину О отрезка от точки F до директрисы, длину которого обозначим через Р и будем называть параметром параболы. Пусть М(Х, У) произвольная точка, лежащая на параболе. Пусть точка N основание перпендикуляра, опущенного из М На директрису. По определению параболы MN = MF.
Из этого условия получаем Каноническое уравнение параболы в выбранной системе координат
Пусть P > 0, исследуем форму параболы.
Из канонического уравнения параболы видно, что Х не может принимать отрицательных значений, т. е. все точки параболы лежат справа от оси ОY. Уравнение содержит переменную У В квадрате, значит парабола симметрична относительно оси ОХ, эта ось называется Осью Параболы. Точка О пересечения параболы с ее осью симметрии называется Вершиной параболы.
Для параболы, заданной уравнением (2.11), вершина совпадает с началом координат, а ось симметрии – с осью ОХ. График параболы имеет вид, изображенный на рисунке 2.7. Уравнение директрисы записывается в виде .
Фокус параболы для параболы с осью симметрии – осью Х имеет вид F(,0), а для параболы с осью симметрии осью Y – F(0,).
Определяет параболу, область определения которой .
Имеет вершину в начале координат, фокус , директрису ; ветви параболы направлены в положительную сторону оси OY и ветви направлены в отрицательную сторону оси OY, если уравнение параболы Х2 = –2Py. Осью симметрии такой параболы является ось ОY, а вершиной – начало координат.
Пример 2.4. Составить уравнение параболы и ее директрисы, зная, что она симметрична относительно оси ОY, фокус находится в точке F(0; 2), вершина совпадает с началом координат.
Решение. Будем искать уравнение параболы в виде Х2 = 2Py, так как по условию она симметрична относительно оси OY.
По условию , а значит, P = 4. Итак, искомое уравнение имеет вид Х2 = 8У, уравнение ее директрисы у = –2.
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Составить простейшее уравнение параболы если известно что ее фокус находится в точке пересечения прямой
Видео:Как легко составить уравнение параболы из графикаСкачать
Глава 20. Парабола
Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F , расстояние от фокуса до директрисы — буквой р. Число р называется параметром параболы.
Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением
(1)
Уравнение (1) называется каноническим уравнением параболы. В этой же системе координат директриса данной параболы имеет уравнение
.
Фокальный радиус произвольной точки М( x; y ) параболы (то есть длина отрезка F(M ) может быть вычислен по формуле
.
Парабола имеет одну ось симметрии, называемую осью параболы, с которой она пересекается в единственной точке. Точка пересечения параболы с осью называется ее вершиной. При указанном выше выборе координатной системы ось параолы совмещена с осью абсцисс, вершина находится в начале координат, вся парабола лежит в правой полуплоскости.
Если координатная система выбрана так, что ось абсцисс совмещена с осью параболы, начало координат — с вершиной, но парабола лежит в левой полуплоскости (рис.), то ее уравнение будет иметь вид
(2)
В случае, когда начало координат находится в вершине, а с осью совмещена ось ординат, парабола будет иметь уравнение
(3)
если она лежит в верхней полуплоскости (рис.), и
(4)
если в нижней полуплоскости (рис.)
Каждое из уравнений параболы (2), (3), (4), как и уравнение (1), называется каноническим.
Видео:Уравнение параболы #алгебра #графики #парабола #репетиторСкачать
Парабола — определение и вычисление с примерами решения
Парабола:
Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.
Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы
Рис. 34. Парабола, (уравнение директрисы.
Возведем обе части уравнения в квадрат
Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: (а также аналогичные ему, см. Рис. 35а и Рис. 356).
Рис. 35а. Параболы и их уравнения.
Рис. 356. Параболы и их уравнения.
Найдем координаты точек пересечения параболы с координатными осями:
- — точка пересечения параболы с осью абсцисс;
- — точка пересечения параболы с осью ординат.
Определение: Точка О(0; 0) называется вершиной параболы.
Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка следовательно, парабола симметрична относительно оси абсцисс.
Пример:
Дано уравнение параболы Определить координаты фокуса параболы и составить уравнение параболы.
Решение:
Так как из уравнения параболы следует, что следовательно, Таким образом, фокус этой параболы лежит в точке а уравнение директрисы имеет вид
Пример:
Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы до её асимптоты.
Решение:
Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.
Гипербола:
Следовательно, действительная полуось гиперболы а мнимая полуось — Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Итак, Вычислим расстояние от фокуса до асимптоты которое равно параметру р:
Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид:
Пример:
Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Написать уравнение директрисы.
Решение:
Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс:
Следовательно, большая полуось эллипса а малая полуось Так как , то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Так как фокус параболы совпадает с одним из фокусов или эллипса, то параметр р найдем из равенства уравнение параболы имеет вид Директриса определяется уравнением
Видео:КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать
Уравнение параболоида вращения
Пусть вертикальная парабола
расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).
Для вывода уравнения поверхности рассмотрим произвольную точку параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).
Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем
Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения
Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Многогранник
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
- Четырехугольник
- Многогранники
- Окружность
- Эллипс
- Гипербола
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Видеоурок "Парабола"Скачать
2.5 Парабола
Парабола Есть геометрическое место точек на плоскости, равноотстоящих от данной точки, называемой фокусом, и данной прямой, называемой директрисой.
Выберем систему координат таким образом (рисунок 2.7): за ось ОХ примем прямую, проходящую через фокус F перпендикулярно к директрисе, за положительное направление примем направление от директрисы к фокусу. За начало координат примем середину О отрезка от точки F до директрисы, длину которого обозначим через Р и будем называть параметром параболы. Пусть М(Х, У) произвольная точка, лежащая на параболе. Пусть точка N основание перпендикуляра, опущенного из М На директрису. По определению параболы MN = MF.
Из этого условия получаем Каноническое уравнение параболы в выбранной системе координат
Пусть P > 0, исследуем форму параболы.
Из канонического уравнения параболы видно, что Х не может принимать отрицательных значений, т. е. все точки параболы лежат справа от оси ОY. Уравнение содержит переменную У В квадрате, значит парабола симметрична относительно оси ОХ, эта ось называется Осью Параболы. Точка О пересечения параболы с ее осью симметрии называется Вершиной параболы.
Для параболы, заданной уравнением (2.11), вершина совпадает с началом координат, а ось симметрии – с осью ОХ. График параболы имеет вид, изображенный на рисунке 2.7. Уравнение директрисы записывается в виде .
Фокус параболы для параболы с осью симметрии – осью Х имеет вид F(,0), а для параболы с осью симметрии осью Y – F(0,).
Определяет параболу, область определения которой .
Имеет вершину в начале координат, фокус , директрису ; ветви параболы направлены в положительную сторону оси OY и ветви направлены в отрицательную сторону оси OY, если уравнение параболы Х2 = –2Py. Осью симметрии такой параболы является ось ОY, а вершиной – начало координат.
Пример 2.4. Составить уравнение параболы и ее директрисы, зная, что она симметрична относительно оси ОY, фокус находится в точке F(0; 2), вершина совпадает с началом координат.
Решение. Будем искать уравнение параболы в виде Х2 = 2Py, так как по условию она симметрична относительно оси OY.
По условию , а значит, P = 4. Итак, искомое уравнение имеет вид Х2 = 8У, уравнение ее директрисы у = –2.
📽️ Видео
§24 Каноническое уравнение параболыСкачать
Как определить уравнение параболы по графику?Скачать
ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Фокус и директриса параболы 2Скачать
Как строить параболу? | TutorOnlineСкачать
Видеоурок "Гипербола"Скачать
Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать
Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать
Вычисление фокуса параболыСкачать
Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать
Квадратичная функция. Вершина параболы и нули функции. 8 класс.Скачать