Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Видео:213. Фокус и директриса параболы.Скачать

213. Фокус и директриса параболы.

Глава 20. Парабола

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой. Фокус параболы обозначается буквой F , расстояние от фокуса до директрисы — буквой р. Число р называется параметром параболы.

Пусть дана некоторая парабола. Введем декартову прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус данной параболы перпендикулярно к директрисе и была направлена от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой (рис.). В этой системе координат данная парабола будет определяться уравнением

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3(1)

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Уравнение (1) называется каноническим уравнением параболы. В этой же системе координат директриса данной параболы имеет уравнение

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3.

Фокальный радиус произвольной точки М( x; y ) параболы (то есть длина отрезка F(M ) может быть вычислен по формуле

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3.

Парабола имеет одну ось симметрии, называемую осью параболы, с которой она пересекается в единственной точке. Точка пересечения параболы с осью называется ее вершиной. При указанном выше выборе координатной системы ось параолы совмещена с осью абсцисс, вершина находится в начале координат, вся парабола лежит в правой полуплоскости.

Если координатная система выбрана так, что ось абсцисс совмещена с осью параболы, начало координат — с вершиной, но парабола лежит в левой полуплоскости (рис.), то ее уравнение будет иметь вид

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3(2)

В случае, когда начало координат находится в вершине, а с осью совмещена ось ординат, парабола будет иметь уравнение

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3(3)

если она лежит в верхней полуплоскости (рис.), и

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3(4)

если в нижней полуплоскости (рис.)

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Каждое из уравнений параболы (2), (3), (4), как и уравнение (1), называется каноническим.

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Парабола: формулы, примеры решения задач

Определение параболы. Параболой называется множество всех точек плоскости, таких, каждая из которых находится на одинаковом расстоянии от точки, называемой фокусом, и от прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы имеет вид:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3,

где число p, называемое параметром параболы, есть расстояние от фокуса до директрисы.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

На чертеже линия параболы — бордового цвета, директриса — ярко-красного цвета, расстояния от точки до фокуса и директрисы — оранжевого.

В математическом анализе принята другая запись уравнения параболы:

то есть ось параболы выбрана за ось координат. Можно заметить, что ax² — это квадратный трёхчлен ax² + bx + c , в котором b = 0 и c = 0 . График любого квадратного трёхчлена, то есть левой части квадратного уравнения, будет параболой.

Фокус параболы имеет координаты Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Директриса параболы определяется уравнением Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3.

Расстояние r от любой точки Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3параболы до фокуса определяется формулой Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3.

Для каждой из точек параболы расстояние до фокуса равно расстоянию до директрисы.

Пример 1. Определить координаты фокуса параболы Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Решение. Число p расстояние от фокуса параболы до её директрисы. Начало координат в данном случае — в роли любой точки, расстояния от которой от фокуса до директрисы равны. Находим p:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Находим координаты фокуса параболы:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Пример 2. Составить уравнение директрисы параболы Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Решение. Находим p:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Получаем уравнение директрисы параболы:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Пример 3. Составить уравнение параболы, если расстояние от фокуса до директрисы равно 2.

Решение. Параметр p — это и есть данное расстояние от фокуса до директрисы. Подставляем и получаем:

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Траектория камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет параболой (при отсутствии сопротивления воздуха). Зона достижимости для пущенных камней вновь будет параболой. В данном случае речь идёт об огибающей кривой траекторий камней, выпущенных из данной точки под разными углами, но с одной и той же начальной скоростью.

Парабола обладает следующим оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно её оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения (фигур, получающихся при вращении параболы вокруг оси). Пучок параллельных лучей, двигающийся вдоль оси параболы, отражаясь, собирается в её фокусе.

Видео:§24 Каноническое уравнение параболыСкачать

§24 Каноническое уравнение параболы

Парабола свойства и график квадратичной функции

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

  1. Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика). Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3
  2. Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.

Видео:Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать

Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x2 + b x + c (узнаваемый шаблон: y = x2).

Видео:Уравнение параболы #алгебра #графики #парабола #репетиторСкачать

Уравнение параболы #алгебра #графики #парабола #репетитор

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Видео:Как легко составить уравнение параболы из графикаСкачать

Как легко составить уравнение параболы из графика

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Видео:КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

Пример.

Имеется функция у = 4 * x2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2,
  • y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.

Получаем координаты вершины (-2, -41).

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Смещение параболы

Классический случай, когда в квадратичной функции y = a x2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0, 0).

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 по оси ординат.

Видео:Фокус и директриса параболы 1Скачать

Фокус и директриса параболы 1

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х1, 2 = (-b ± D0,5) / (2 * a),
  • D = 0, то х1, 2 = -b / (2 * a),
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей,
  • найти координаты вершины,
  • найти пересечение с осью ординат,
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х2 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх,
  2. координаты экстремума: х = (-5) / 2 = 5/2, y = (5/2)2 — 5 * (5/2) + 4 = -15/4,
  3. с осью ординат пересекается в значении у = 4,
  4. найдем дискриминант: D = 25 — 16 = 9,
  5. ищем корни:
  • Х1 = (5 + 3) / 2 = 4, (4, 0),
  • Х2 = (5 — 3) / 2 = 1, (1, 0).

По полученным точкам можно построить параболу.

Пример 2.

Для функции у = 3 * х2 2 * х 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх,
  2. координаты экстремума: х = (-2) / 2 * 3 = 1/3, y = 3 * (1/3)2 — 2 * (1/3) — 1 = -4/3,
  3. с осью у будет пересекаться в значении у = -1,
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х1 = (2 + 4) / 6 = 1, (1,0),
  • Х2 = (2 — 4) / 6 = -1/3, (-1/3, 0).

По полученным точкам можно построить параболу.

Видео:Как определить уравнение параболы по графику?Скачать

Как определить уравнение параболы по графику?

Директриса, эксцентриситет, фокус параболы

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Составить каноническое уравнение параболы если расстояние фокуса до вершины равно 3

Эксцентриситет (константа) = 1.

Видео:Лекция 31.3. Кривые второго порядка. Парабола.Скачать

Лекция 31.3. Кривые второго порядка. Парабола.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

📹 Видео

Видеоурок "Парабола"Скачать

Видеоурок "Парабола"

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

§25 Исследование канонического уравнения параболыСкачать

§25 Исследование канонического уравнения параболы

Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Написать каноническое уравнение гиперболы.  Дан эксцентриситет

Фокус и директриса параболы 2Скачать

Фокус и директриса параболы 2
Поделиться или сохранить к себе: