Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.
Найти решение задачи Коши для дифференциального уравнения:
при заданных начальных условиях:
При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .
Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:
удовлетворяющее начальным условиям:
Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:
Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:
Далее, поставляем начальные условия в функцию и её производную :
Решая полученную систему уравнений получаем значения произвольных постоянных и :
Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Другие полезные разделы:
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
Видео:Операционный метод для задачи КошиСкачать
Решения интегральных уравнений онлайн
В этом разделе мы рассмотрим типовые задачи по интегральным уравнениям с решениями. Интегральное уравнение содержит неизвестную функцию под знаком интеграла (по аналогии как дифференциальное — функцию под знаком дифференциала:)).
Выделяют два основных класса интегральных уравнений: уравнения Фредгольма I и II рода:
$$ (I) quad int_a^b K(x,s)u(s)ds = f(x),\ (II) quad u(x)=int_a^b K(x,s)u(s)ds + f(x). $$
В случае переменного верхнего предела интегрирования получаем соответственно уравнение Вольтерра I и II рода:
$$ (I) quad int_a^x K(x,s)u(s)ds = f(x),\ (II) quad u(x)=int_a^x K(x,s)u(s)ds + f(x). $$
Это линейные неоднородные уравнения (при $f(x)=0$ — однородные), иногда рассматриваются более общий случай с параметром $lambda$ перед интегралом.
Ниже вы найдете примеры нахождения решений интегральных уравнений, собственных значений и функций, исследования ядра, применения интегральных уравнений для решения других задач.
Видео:ТФКП. Интегральная формула Коши. Примеры решений типовых задач. Решение контурных интегралов.Скачать
Примеры решений интегральных уравнений
Задача 1. Пользуясь теоремой Гильберта-Шмидта, исследовать и решить интегральное уравнение 2-го рода $(E+lambda A)x=y$ в гильбертовом пространстве $X$.
Задача 2. Найти собственные значения и собственные функции уравнения:
$$ y(x)=lambda int_0^1 (cos 2pi x +2x sin 2pi t +t sin pi x)y(t)dt. $$
Задача 3. Решить уравнение Вольтерры, сведя его к обыкновенному дифференциальному уравнению.
Задача 4. Решить или установить неразрешимость уравнений с вырожденным ядром.
Задача 5. Решить интегральное уравнение, сведя его предварительно к обыкновенному дифференциальному уравнению.
Задача 6. Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром $K(x,t)=x^t^$.
Задача 7. Исследовать решения уравнения с вырожденным ядром при различных значениях параметра $lambda$ (ограничиться случаем вещественных характеристических чисел).
$$ y(x)-lambda int_0^1 x y(t)dt = sin 2pi x. $$
Задача 8. Для симметричного ядра $$K(x,t) = frac sin |x-t| quad (0 le, x,t le pi)$$ найти характеристические числа и соответствующие им собственные функции, сводя интегральное уравнение к однородной краевой задаче для обыкновенного дифференциального уравнения.
Задача 9. Решить краевую задачу, используя функцию Грина
Задача 10. Применяя преобразование Лапласа, решить интегральное уравнение
Видео:Сергеев И. Н. - Дифференциальные уравнения - Задача КошиСкачать
Помощь с интегральными уравнениями
Если вам нужна помощь с решением задач и контрольных по интегральным уравнениям (и другим разделам математического и функционального анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 200 рублей , оформление производится в Word, срок от 1 дня.
Видео:Интегральные формулы КошиСкачать
Решение задачи Коши
Онлайн калькулятор для решения задачи Коши. Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).
Для того чтобы решить задачу Коши необходимо найти общее решение дифференциального уравнения, а потом подставить начальные условия и найти неизвестные коэффициенты С1 и С2.
Данный калькулятор решает задачу Коши для дифференциального уравнения второго порядка.
В калькулятор вводим дифференциальное уравнение и начальные условия, как указано в примере, нажимаем кнопку «Вычислить», получаем ответ.
📽️ Видео
Решить интегральное уравнение (ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ) Свёртка функций, Умножение изображенийСкачать
3. Условия существования и единственности решения задачи КошиСкачать
Интегральные уравнения ВольтерраСкачать
Решить интегральное уравнениеСкачать
ДУ Задача КошиСкачать
РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Простейшие интегральные уравненияСкачать
Уравнения Фредгольма - 1Скачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Решить задачу Коши для дифференциального уравнения с помощью формулы ДюамеляСкачать
5. Метод последовательных приближенийСкачать
Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУСкачать