Составить блок схему линейного уравнения

Составить блок схему линейного уравнения

Блок 1. Линейные уравнения и неравенства с параметрами

Покажем решение линейного уравнения Составить блок схему линейного уравнения , где a -параметр, k ( a ), b ( a )-выражения, содержащие параметр. В общем виде решение удобнее всего изобразить следующей блок-схемой (рис.1).

SHAPE * MERGEFORMAT

бесконечно много корней, т.е.

Составить блок схему линейного уравнения

Рис.1. Блок-схема решения линейного уравнения.

Эта блок-схема удобна тем, что идеально отражает обычное для задач с параметрами «ветвление» решения в зависимости от значений параметра. Мы видим, что из одного уравнения Составить блок схему линейного уравнения возникает три уравнения: Составить блок схему линейного уравнения Составить блок схему линейного уравнения Составить блок схему линейного уравнения , каждое из которых уже решается единым, определенным, стандартным способом.

Добавим, что в рассмотренной блок-схеме предполагается, что все значения и переменной x , и параметра a являются допустимыми. Если это не так, т.е. при определенных значениях x и a уравнение не имеет смысла, то решение усложняется. Возникает необходимость во-первых, определить эти недопустимые значения, а во-вторых, учесть их в процессе решения.

Часто в задачах на линейные уравнения и неравенства с параметрами бывает полезно «опереться» на линейную функцию Составить блок схему линейного уравнения , где k , b -коэффициенты. Напомним график линейной функции (рис.2).

SHAPE * MERGEFORMAT

Составить блок схему линейного уравнения

Рис.2. График линейной функции.

Это, как известно, прямая, расположенная под углом Составить блок схему линейного уравнения к положительному направлению оси OX и отсекающая на оси ординат отрезок b . Важно помнить, что Составить блок схему линейного уравнения и коэффициент k называется угловым коэффициентом. Очевидно, в задачах с параметрами на линейную функцию ее записывают в таком виде: Составить блок схему линейного уравнения , где a -параметр. В зависимости от a графиками здесь является множество всевозможных прямых на координатной плоскости ( XOY ). Полезно помнить, что линейная функция не «описывает» прямые, которые параллельны оси ординат ( Составить блок схему линейного уравнения ).

В этом же модуле рассмотрим тему «Системы двух линейных уравнений с двумя неизвестными с параметрами».

Составить блок схему линейного уравнения

Решить такую систему – значит найти такие пары чисел Составить блок схему линейного уравнения , которые являются решениями и первого и второго уравнений одновременно. Собственно решения Составить блок схему линейного уравнения можно находить двумя популярными в школьном курсе приемами: подстановкой или «сложением-вычитанием» уравнений. Однако в задачах с параметрами требуется еще и исследовать количество решений в зависимости от параметра a . Чтобы наглядней понять смысл дальнейшего алгоритма решений подобных задач, запишем каждое уравнение системы через линейную функцию.

Составить блок схему линейного уравнения

Учитывая тот факт, что каждое уравнение системы геометрически представляет прямую на плоскости, возможны три случая расположения двух прямых, а, следовательно, три случая решения системы.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Основные блок-схемы решения линейных и квадратичных задач с параметрами

Разделы: Математика

Задачи с параметрами (ЗсП) традиционно являются наиболее сложными для учащихся, поскольку требуют от них умения логически рассуждать и проводить анализ решения. Подобные задачи являются первыми исследовательскими задачами, с которыми встречаются школьники. Для их решения не требуются знания, выходящие за пределы школьной программы, но недостаточно применения лишь стандартных приемов, а необходимо глубокое понимание всех разделов элементарной математики.

В данной статье предпринята попытка систематизации и формализации (в форме блок-схем) наиболее часто встречающихся и наиболее типичных ЗсП. При этом выделены классы задач, решаемых по единой методике.

Рассматриваются аналитические методы решения ЗсП, сводящиеся к исследованию линейных или квадратных уравнений (неравенств), а также квадратного трехчлена. Такой выбор обусловлен тем, что курс школьной математики ограничен «вглубь», по существу, «теорией квадратичного».

Линейные уравнения

Определение. Уравнение вида ax=b, где a, b принадлежат множеству всех действительных чисел, будем называть стандартным видом линейного уравнения. Всевозможные варианты, возникающие при решении линейных уравнений, отразим в блок–схеме I.

Составить блок схему линейного уравнения

Количество корней линейного уравнения отразим в блок-схеме II:

Составить блок схему линейного уравнения

Пример 1. Для всех действительных значений параметра m решите уравнение m 2 x–2=4x+m.

Решение. Приведем заданное линейное уравнение к стандартному виду:

m 2 x–2=4x+m, m 2 x–4x=m+2, (m 2 –4)x=m+2.(1)

Следуя схеме I, рассмотрим два случая для коэффициента при x:

1)если m 2 – 4 не равно 0, m не равно ±2, то x=(m+2)/(m 2 -4), x=1/(m–2);

а) при m = –2 уравнение (1) примет вид 0х=0, отсюда х – любое действительное число;

б) при m = 2 уравнение (1) примет вид 0х= 4, отсюда следует, что корней нет.

Ответ. Если m 2 то x=1/(m–2); если m= – 2, то x – любое действительное число; если m=2, то корней нет.

Пример 2. При каких значениях параметра k уравнение 2(k–2x)=kx+3 не имеет корней?

Решение. 2(k–2x)=kx+3, (k+4)x=2k–3. В силу схемы II уравнение не имеет корней, если k+4=0 и 2k–3 не равно 0 => k= –4 и k не равно 1,5 => k = –4.

Ответ. k=–4.

Системы линейных уравнений

Определение 1. Система называется совместной, если она имеет хотя бы одно решение.

Определение 2. Система называется несовместной, если она не имеет ни одного решения.

Количество решений системы линейных уравнений отразим в блок-схеме III.

Составить блок схему линейного уравнения

Замечание. Так как уравнение прямой y=kx+b в общем виде записывается следующим образом ax+by+c=0, то взаимное расположение двух прямых отразим в блок-схеме IV.

Составить блок схему линейного уравнения

Пример. При каких значениях параметра c система из двух уравнений c 2 x+(2–c)y–4=c3 и (2c–1)y+cx+2=c 5 совместна?

Решение. Запишем систему в стандартном виде: c 2 x+(2–c)y=c 3 +4 и cx+(2c–1)y=c 5 –2. Сначала найдем значения c, при которых эта система не имеет решений. В силу схемы III имеем условие,

c 2 /с=(2-с)/(2с–1), с не равно (c 3 +4)/(c 5 –2),

которое равносильно системе из уравнения и неравенства

с=(2–с)/(2с–1) и с не равно (c 3 +4)/(c 5 –2).

Решением системы является с=1. Итак, система имеет решения при всех действительных значениях с, кроме с=1.

Ответ. с — любое действительное число, с не равно 1.

Линейные неравенства

Определение. Неравенство вида ax>b, ax b, ax b, отразим в блок-схеме V.

Составить блок схему линейного уравнения

Пример. Для всех значений параметра m решите неравенство 5x–m>mx–3.

Решение. 5x–m>mx–3, (5–m)x>m–3.

Следуя схеме V, рассмотрим три случая для коэффициента при х:

2)если 5–m 5, то x 2. Откуда следует, что решений нет.

Ответ. Если m (m–3)/(5–m); если m=5, то решений нет; если m>5, то х 2 +bx+c=0, где a, b, c — любые действительные числа, a>0, называется квадратным уравнением относительно действительного переменного x.

Ситуации, возникающие при решении квадратных уравнений, отразим в блок–схеме VI.

Составить блок схему линейного уравнения

Пример. При каких значениях параметра c уравнение (c–2)x 2 +2(с–2)x+2=0 не имеет корней?

Решение. Рассмотрим два случая:

1) если с–2 не равно 0, c не равно 2, то D 2 –2(c–2) 2 +(c+4)x+c+7=0 имеет только отрицательные корни?

Решение. В силу условия задачи необходимо рассмотреть два случая (линейный и квадратичный):

1) если c–1=0, c=1, то уравнение примет вид 5x+8=0, x= –5/8 – отрицательный корень;

2) если c–1 не равно 0, c не равно 1, то, следуя схеме VII, получим систему

Составить блок схему линейного уравнения

Решением ее являются промежутки –22/3 2 +bx+c, где a не равно 0, называется квадратичной. График квадратичной функции называется параболой.

Абсциссы точек пересечения параболы y=ax 2 +bx+c с осью (Ox) являются корнями уравнения ax 2 +bx+c=0.

Учитывая это, отразим взаимное расположение параболы и оси (Ox) в следующей схеме:

Составить блок схему линейного уравнения

Замечание. Если уравнение параболы имеет вид y=a(x–p) 2 +q, то (p; q) – координаты вершины параболы.

Пример 1. При каких значениях параметра a вершина параболы y=(x–7a) 2 +a 2 –10+3a лежит в III координатной четверти?

Решение. Пусть (x0, y0) – координаты вершины параболы. В силу замечания имеем x0=7a, y0=a 2 –10+3a. Так как вершина параболы лежит в третьей четверти, то

Составить блок схему линейного уравнения

Ответ. –5

Пример 2. При каких значениях параметра b график функции y=(4–b 2 )x 2 +2(b+2)x–1 лежит ниже оси (Ox)?

Решение. Рассмотрим два случая.

1. Пусть 4–b 2 =0, b= + 2;

1) если b=2, то прямая y=8x–1 не лежит ниже оси (Ox);

2) если b= –2, то прямая y= –1 лежит ниже оси (Ox).

2. Пусть 4–b 2 не равно 0. Тогда в соответствии со схемой VIII получим

Составить блок схему линейного уравнения

Объединяя ответы, получим b 2 +bx+c=0. Введем функцию y(x)= ax 2 +bx+c. Тогда расположение корней этого уравнения на числовой оси отразим в блок–схеме IX.

Составить блок схему линейного уравнения

Следствие. С учетом схемы IX схема VII для знаков корней квадратного уравнения примет следующий вид:

Составить блок схему линейного уравнения

Пример. При каких значениях параметра a корни уравнения x 2 –2(a+3)x+a 2 +6,25a+8=0 больше 2?

Решение. Введем функцию y(x)=x 2 –2(a+3)x+a 2 +6,25a+8; x0 – абсцисса вершины этой параболы. Так как корни уравнения находятся справа от числа 2, то в соответствии со схемой IX имеем:

Составить блок схему линейного уравнения

Решение. Данная задача равносильна следующей: при каких значениях параметра b система

имеет одно решение?

Решим неравенство (2): 2x 2 –2x–1>0, x1,2=0,5(1±(3) 1/2 ), x 1/2 ) или x>0,5(1+(3) 1/2 ).

Найдем корни уравнения (1): D=(2b–7) 2 , x1=2, x2=2b–5. Поскольку корень x1=2 удовлетворяет неравенству (2), то система имеет одно решение в следующих случаях:

1) если x2=2b–5 не удовлетворяет неравенству (2), то 0,5(1–(3) 1/2 ) 1/2 ) или 0,25(11–O3) 1/2 );

Ответ. 0,25(11–(3) 1/2 ) 1/2 ), b=3,5.

Пример 2. При каких значениях параметра p уравнение 5–4sin 2 x–8cos 2 (x/2)=3p имеет корни?

Решение. Преобразуем заданное уравнение:

5– 4sin 2 x–8cos 2 (x/2)=3p => 5–4(1–cos2x)–4(1+cosx)=3p => 4cos 2 x–4cosx–3p–3=0.

Сделаем замену cosx=t. Тогда заданная задача равносильна следующей: при каких значениях p система

4t2–4t–3p–3=0, (1)
-1 2 –4t–3p–3; t0–вершина этой параболы. В силу схемы IX случаи 1, 2 и 3 описываются следующей совокупностью:

Видео:Блок-схемы для начинающих (Блок схемы алгоритмов)Скачать

Блок-схемы для начинающих (Блок схемы алгоритмов)

Линейный алгоритм. Понятие и особенности. Блок-схема

Каждый человек на протяжении своей жизни решает множество задач разной сложности. Но даже самые простые из задач выполняются последовательно, то есть за несколько шагов. Эту последовательность можно назвать алгоритмом. Последовательности бывают разные, но начинать их изучение лучше всего с линейных.

Прежде чем приступить к рассмотрению основной темы статьи, следует сделать краткое отступление и сказать несколько слов про алгоритмический язык.

Видео:0.Блок схема. 8 классСкачать

0.Блок схема. 8 класс

Алгоритмический язык

Представьте, что человеку, работающему за компьютером, поставлена некая вычислительная задача. В языке программирования решение этой задачи выполняется с помощью алгоритмизации. Решение предполагает: — разбиение на этапы; — разработку алгоритма; — составление программы решения на алгоритмическом языке; — ввод данных; — отладку программы (возможны ошибки — их надо исправить); — выполнение на ПК; — анализ результатов.

Алгоритмический язык является средством описания алгоритмов, а уже алгоритм, в свою очередь, представляет собой чёткое описание определённой последовательности действий, направленных на решение необходимой задачи.

Видео:Самый подробный урок про Блок-схемы, Понимание, Чтение и Создание блок-схемСкачать

Самый подробный урок про Блок-схемы, Понимание, Чтение и Создание блок-схем

Свойства алгоритма

Их несколько: — конечность. Любой алгоритм должен быть завершённым, а окончание наступает после выполнения определённого числа шагов; — однозначность, понятность. Не допускается разных толкований, неопределённости и двусмысленности — всё должно быть чётко и ясно, а также понятно исполнителю — и правила выполнения действий линейного алгоритма, и сами действия; — результативность. Итог работы — результат, полученный за конечное число шагов; — универсальность, массовость. Качественный алгоритм способен решать не одну задачу, а целый класс задач, имеющих схожую постановку/структуру.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Линейная структура

Любой алгоритм составляется из ряда базовых структур. Простейшей базовой структурой является следование — структура с линейными характеристиками. Из этого можно сформулировать определение.

Линейный алгоритм — это алгоритм, образуемый командами, которые выполняются однократно и именно в той последовательности, в которой записаны. Линейная структура, по сути, проста. Записать её можно как в текстовой, так и в графической форме.

Представим, что у нас стоит задача пропылесосить ковёр в комнате. В текстовой форме алгоритм будет следующим: — принести пылесос к месту уборки; — включить; — пропылесосить; — выключить; — унести пылесос.

И каждый раз, когда нам надо будет пылесосить, мы будем выполнять один и тот же алгоритм.

Теперь поговорим про графическую форму представления.

Блок-схема

Для изображения алгоритма графически используют блок-схемы. Они представляют собой геометрические фигуры (блоки), соединённые стрелками. Стрелки показывают связь между этапами и последовательность их выполнения. Каждый блок сопровождается надписью.

Рассмотрим фигуры, которые используются при визуализации типичной линейной последовательности.

Составить блок схему линейного уравнения

Блок ввода-вывода данных (отображает список вводимых и выводимых переменных):

Составить блок схему линейного уравнения

Арифметический блок (отображает арифметическую операцию/группу операций):

Составить блок схему линейного уравнения

Условный блок (позволяет описать условие). Алгоритмы с таким блоком используются при графической визуализации алгоритмов с ветвлением:

Составить блок схему линейного уравнения

Условного блока нет в классическом линейном алгоритме, так как в нём, как уже было сказано ранее, все операции выполняются последовательно, то есть одна за другой. В линейном алгоритме размещение блоков выглядит следующим образом:

Составить блок схему линейного уравнения

А вот, как решается задача по нахождению площади треугольника по формуле Герона. Здесь a, b, c – это длины сторон, S – площадь треугольника, P – периметр.

Составить блок схему линейного уравнения

Следует обратить внимание, что запись «=» — это не математическое равенство, а операция присваивания. В результате этой операции переменная, стоящая слева от оператора, получает значение, которое указано справа. Значение не обязательно должно быть сразу определено (a = 3) — оно может вычисляться посредством выражения (a = b + z), где b = 1, a z = 2.

Видео:Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

Примеры линейных алгоритмов

Если рассмотреть примеры решения на языке Pascal (именно этот язык до сих пор используется для изучения основ алгоритмизации и программирования), то можно увидеть следующую картину:

Составить блок схему линейного уравнения

И, соответственно, блок-схема программы линейной структуры будет выглядеть следующим образом:

Составить блок схему линейного уравнения

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Как составить программу линейной структуры?

Порядок следующий: — определите, что именно относится к исходным данными, а также каков типы/класс этих данных, выберите имена переменных; — определите, каков тип данных будет у искомого результата, выберите название переменных (переменной); — определите, какие математические формулы связывают результат и исходные данные; — если требуется наличие промежуточных данных, определите класс/типы этих данных и выберите имена; — опишите все используемые переменные; — запишите окончательный алгоритм. Он должен включать в себя ввод данных, вычисления, вывод результатов.

На этом всё, в следующий раз рассмотрим на примерах программу разветвлённой структуры. Если же вас интересует тема алгоритмизации в контексте разработки программного обеспечения, ждём вас на профессиональном курсе OTUS!

📺 Видео

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

3 Линейный алгоритм в блок-схеме: 2 примера за 2 мин, как сделать блок-схему для линейного алгоритмаСкачать

3 Линейный алгоритм в блок-схеме: 2 примера за 2 мин, как сделать блок-схему для линейного алгоритма

Решаем линейные уравнения на ОГЭ по математике 2022. Блок №1Скачать

Решаем линейные уравнения на ОГЭ по математике 2022. Блок №1

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

7 класс, 4 урок, Линейное уравнение с одной переменной

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменнойСкачать

7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменной

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Линейные блок-схемыСкачать

Линейные блок-схемы

Блок схема алгоритма (часть 1)Скачать

Блок схема алгоритма (часть 1)
Поделиться или сохранить к себе: