Составить алгоритм решения квадратного уравнения информатика

Один из методов решения квадратных уравнений

Алгоритм решения данной задачи сначала должен быть представлен в виде словесного описания или графически в виде блок-схемы. Алгоритм вычисления корней квадратного уравнения может быть представлен в виде блок-схем, изображенных на рисунках, отображающих основные элементы блок-схем и алгоритм вычисления корней квадратного уравнения:

Составить алгоритм решения квадратного уравнения информатика

Составить алгоритм решения квадратного уравнения информатика

Изображение алгоритма в виде блок-схемы позволяет наглядно представить последовательность действий, необходимых для решения поставленной задачи, убедиться самому программисту в правильности понимания поставленной задачи.

После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму. Например, ниже приведен фрагмент программы решения квадратного уравнения, соответствующий приведенному выше алгоритму, составленному на языке Visual Basic.

procedure SqRoot(Editi,Edit2,Edit3:tEdit;Label2:tLabel);
var
a,b,c:real;
d:real;
xl,x2:real;
begin
a:=StrToFloat(Editl.text);
b:=StrToFloat(Edit2.text);
с:=StrToFloat(Edj.t3.text);
d:=Sqr(b)-4*a*c;
if d=0 then begin
Label2.color:=clRed;
Label2.font.color:=clRed;
Label2.caption:=’Дискриминант меньше нуля.’+#13+
‘Уравнение не имеет корней.’ end else
begin

х1:=(-b+Sqrt(d))/(2*a);
x2:=(-b-Sqrt(d))/(2*а);

Label2.font.color:=clBlack;
Label 2.caption=’Корни уравнения:’ +#13+’xl=1+FloatToStr(xl)
+#13+’x2=’+FloatToStr(x2);
end;
end.

Но программа, написанная на языке программирования, состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Поэтому чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, она должна быть переведена на язык команд процессора, то есть машинный язык. Задачу преобразования исходной программы в машинный код выполняет специальная программа — компилятор. Помимо преобразования исходной программы в машинную, компилятор выполняет проверку правильности записи инструкций исходной программы, т. е. осуществляет синтаксический анализ.

Составить алгоритм решения квадратного уравнения информатика

Компилятор создает исполняемую программу только в том случае, если в тексте исходной программы нет синтаксических ошибок. Однако генерация исполняемой программы машинного кода свидетельствует только об отсутствии в тексте программы синтаксических ошибок. Убедиться в правильности работы программы можно только во время ее тестирования – пробных запусках программы и при анализе полученных результатов. Например, если в программе нахождения корней квадратного уравнения допущена ошибка в записи выражения вычисления дискриминанта, то даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.

Решение квадратных уравнений средствами Visual Basic

Задача: Дано квадратное уравнение общего вида: ax 2 +bx+c=0. Ввести в память компьютера числовые коэффициенты: a, b, c, выполнить необходимый анализ введенной информации согласно известному из курса средней школы алгоритму решения квадратного уравнения: найти дискриминант d=b 2 -4ac и, проанализировав его знак, найти все действительные корни, если знак дискриминанта положительный, или сообщить о том, что действительных корней нет, если знак дискриминанта отрицательный.

Начать составление проекта решения данной задачи необходимо с ответа на вопрос: что нужно поместить на форму Form1?

Поместим на форму две кнопки: CommandButton1 и CommandButton2.

Составить алгоритм решения квадратного уравнения информатика

Для этого нужно воспользоваться Панелью элементов (объектов) управления General, которая расположена в левой части основного окна компилятора Visual Basic.

Первая кнопка CommandButton1 предназначается для начала работы программы согласно следующему алгоритму:

  1. ввод коэффициентов исходного уравнения a, b, c;
  2. расчет дискриминанта d=b 2 — 4ac;
  3. анализ знака дискриминанта, вычисление корней уравнения и вывод их на форму, если знак дискриминанта d>0 (положительный);
  4. вывод сообщения: «Решений нет», если знак дискриминанта d 2 -5x+6=0.

Далее рассмотрим процесс решения второго квадратного уравнения: 10x 2 +5x+200=0.

В окне InputBox вводим значение первого коэффициента уравнения a=10.

Составить алгоритм решения квадратного уравнения информатика

Ввод первого коэффициента a завершается нажатием кнопки Ok.

Аналогично в окне InputBox вводим значение второго коэффициента уравнения b=5.

Составить алгоритм решения квадратного уравнения информатика

Ввод второго коэффициента b так же завершается нажатием соответствующей кнопки Ok.

Наконец, в окне InputBox вводим значение третьего коэффициента нового уравнения c=200.

Составить алгоритм решения квадратного уравнения информатика

Ввод третьего коэффициента c так же завершается нажатием соответствующей кнопки Ok.

После этого программа, проанализировав полученную информацию, должна выдать в окне формы соответствующее сообщение о том, что данное уравнение не имеет решений.

Составить алгоритм решения квадратного уравнения информатика

И, наконец, рассмотрим процесс решения третьего квадратного уравнения: x 2 -8x+16=0.

Это уравнение имеет двукратный корень, так как его дискриминант d=0. Как и в двух предыдущих случаях, вводим коэффициенты квадратного уравнения. Первым вводим коэффициент a=1.

Составить алгоритм решения квадратного уравнения информатика

Далее вводим второй коэффициент уравнения b= –8.

Составить алгоритм решения квадратного уравнения информатика

Третий коэффициент уравнения c=16 вводим в последнюю очередь.

Составить алгоритм решения квадратного уравнения информатика

В итоге мы должны увидеть правильное решение третьего квадратного уравнения. Действительно последнее уравнение имеет два одинаковых корня.

Видео:Программа для решения корней квадратного уравнения с использованием дискриминанта на языке ПаскальСкачать

Программа для решения корней квадратного уравнения с использованием дискриминанта на языке Паскаль

Программа для решения квадратных уравнений на C++

Составить алгоритм решения квадратного уравнения информатикаДовольно часто в пособиях по программированию встречаются задания по нахождению решений каких-нибудь математических уравнений. Задача нахождения корней квадратного уравнения — это довольно тривиальная задача, как и многие другие задачи. Решается она очень просто при помощи листа бумаги и ручки, но решение можно автоматизировать посредством написания прикладной программы и её использования. В этой статье мы напишем такую программу.

Алгоритм решения квадратного уравнения

Многие знают, что уравнение вида ax 2 + bx + c = 0 , где a не равно 0, называют квадратным уравнением.

Существуют различные способы решения квадратных уравнений, но мы рассмотрим решение через дискриминант.

Обозначается дискриминант буквой D . Из школьного курса знаем, что D = b 2 — 4ac .

Существует несколько условий:

  • Если D > 0, то решение имеет 2 различных вещественных корня.
  • Если D = 0, то оба вещественных корня равны.
  • Если D для вводавывода в консоли, #include для работы с математическими функциями и область using namespace std;

Просим пользователя ввести значения переменных и сохраняем каждое значение

Проверяем условие, если дискриминант больше или равен 0, то находим корни и выводим

в противном случае выводим сообщение

На этом всё, осталось скомпилировать, запустить и проверить. Запускаем и вводим данные, чтобы D был меньше 0

В этом случае D = 3*3 — 4*2*3 = -15, а это меньше 0, значит ответ программа дала верный.

Ответы тоже верны. Программа работает правильно.

Ниже представлен весь листинг программы для нахождения корней квадратного уравнения на C++

Для вас это может быть интересно:

Видео:34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

34 Задача: Найти корни квадратного уравнения при помощи Python

Программа для решения квадратных уравнений на C++ : 24 комментария

Программировать так сложно…

  1. Nicknixer Автор записи 15.10.2016

Не так сложно, как Вам кажется! Немного литературы, немного практики и смотреть на код решения такой задачи Вы будете по-другому.

Доброго времени суток! Помогите пожалуйста написать программу, которая считает сколько символов в ряде двумерного массива. То есть , например массив 5 на 5, сколько символов в 1 ряде, сколько во 2 и т.д.

Ответил вам по электронной почте

Критику принимаете? 🙂
Программа дырявая как сито.

Если число очень маленькое, но положительное, например 10^(-20) — у вас будет переполнение или типо того. Оператор > проверяет знак числа (это отдельный бит), а оператор == для дробных чисел не имеет смысла, т.к. в младших разрядах числа обычно находится какой-нибудь мусор, который при таком сравнении дает false.

x = ( -1*b + sqrt(b*b — 4*a*c) ) / (2 * a);
x = ( -1*b — sqrt(b*b — 4*a*c) ) / (2 * a);

Тут есть три вопроса:
1) зачем два раза вычислять одно и тоже (я про корень)
2) что делать если мне корни надо как-то использовать, а не просто вывести (тут есть проблема, ведь у меня то один корень — то два). Чтобы лучше понять в чем проблема — попробуйте вынести вычисление корней в отдельную функцию. У вас то вообще, если корень один — то их выведется все равно два, одинаковых.
3) в переменной «a» может быть ноль (или близкое к нулю число) — при этом мы получим деление на ноль (а точнее, переполнение).

Но это ведь еще не все. Что будет если и «a» и «b» равны нулю? — тебе надо рассмотреть два варианта — если c = 0 (условно, близко к нулю), то корней бесконечно много. А если c != 0, то корней нет.

Вообще, эта задача — прекрасный пример для юнит-тестирования и демонстрации принципов разработки через тестирование. Именно его я рассматривал в своей статье по теме тестирования: Юнит-тестирование. Пример. Boost Unit Test. Дело в том, что тут куча вариантов сделать ошибку, при этом их понимание приходит не сразу, т.е. школьник решая задачу напишет по формуле которой учили (ну и вот как у вас). А потом надо разбираться и смотреть как программа может сломаться, при этом разрабатывать тесты.

  1. Николай Сергейчук Автор записи 09.02.2017

Принимаем 🙂
Согласен с вами во всём! Программу можно реализовать намного лучше, используя различные проверки и валидацию входных данных.
Однако, статья рассчитана на аудиторию, которая только начинает познавать программирование или делает лабораторную. 🙂 Чтобы людям легче было понять, реализация данной программы упрощена до невозможности. И, возможно, несправедливо было с моей стороны не предупредить их о возможных ошибках в работе программы, которые могут вскрыться позже, если подать на вход определенные значения.
Кстати, у вас интересная статья по тестированию!

Николай, доброго времени суток! Можете помочь с написанием програмки в с++? 1-1/2!+1/3!-1/4!+1/5! и так до 1/100! ? Чтобы при заднии в строке номера члена последовательности выдавал сумму до него по такой вот формуле? Буду очень благодарен!

Пожалуйста подскажите как ввести экран правильный ответ дискриминанта

Помогите решить в Dev C++
Sqrt x^2+1+sqrt|x|,x0

Здравствуйте, можете помочь с решением биквадратного и триквадратного уравнения?

#include
using namespace std;
int main()
<
/*Решение квадратных уравнений*/
setlocale(0, «»);
cout a;
cout b;
cout c;
D = pow(b, 2) — 4 * a * c;
cout

ну и? если даже тупо скопировать код и вставить его в cpp.sh , ничего не работает. поебота какая то этот с++

Уважаемая, Лена! Я, надеюсь, вы знаете, что код программы, написанной на языке программирования C++ нельзя тупо вставить в блокнот и сохранить под названием «cpp.sh»? Если не знали, то я, видимо, открыл для вас Америку!

помогите решить. заданы 3 перемены a.b.c записать вы радение на С
< 7a/b+2a, если a=b,
Х= b,
b и а не равно != с

iconcerts где забыл
#include

Я ради интереса написал программу нахождения корней квадратного уравнения на С++, с выводом корней как в десятичном виде, так и в виде простой дроби (причём уже сокращённой), потому что выводя корни в десятичном виде программа их одновременно сокращает и округляет и 1/3 превращается в 0.333333 хотя на самом деле 0.333333 (3), то есть для проверки правильно ли нашёл корни ваш ребёнок, вы с получите что-то типа: X1= 0.285714; X2=0.214286, а на самом деле это будет X1=2/7; X2=3/14, кроме того, если корень из дискриминанта не получается целым числом, вы уже получите двойную неточность: сначала при извлечении корня программа отсечёт значение до 4-6 цифр после запятой с округлением, а затем сделает то же самое при делении числителя на знаменатель. Я и здесь сделал вывод корней в двух значениях: в десятичном и в виде выражения X1= (-b + sqrt(D))/(2*a); X2= (-b — sqrt(D))/(2*a), то есть выводится примерно вот так X1=-5+sqrt(21)/2; X2=-5-sqrt(21)/2 с одновременным разложением дискриминанта под корнем на множители, вынесением этих множителей из-под корня, если они выносятся нацело, их перемножением и дальнейшим сокращением. Вот, например, имеем a=3, b=15, c=3, при решении получаем D=189 программа выдаёт десятичные корни X1= -0.208712 и X2= -4.79129, а в виде выражения имеем: X1= -5+sqrt(21)/2, то есть первоначально получаем: X1= -15+sqrt(189)/6, -> 189=21*9 -> -15+3sqrt(21)/6 далее идёт сокращение на 3 и итог -5+sqrt(21)/2

День добрый.
Недавно начал изучать C++. Решил попробовать написать решение квадратного уравнения именно через оператор вида «условие ? выполняется : не выполняется». Т.е. если условие выполняется, то имеем два решения (даже если d = 0, то тоже должно быть два решения x1 = x2), если d a;
std::cout b;
std::cout c;
d = pow(b, 2) — 4 * a*c;
d >= 0 ? xfst = ((-b + sqrt(d)) / double(2 * a)) , xscd = ((-b — sqrt(d)) / double(2 * a)) : std::cout

  1. Николай Сергейчук Автор записи 12.02.2020

if (d >= 0) <
xfst = ((-b + sqrt(d)) / double(2 * a));
xscd = ((-b — sqrt(d)) / double(2 * a));
std::cout

Создать программу для решения квадратного уравнения.
У меня не получаеться, но и копифейсом я не хочу заниматься.
Прошу помогите. Заранее спасибо.

Здравствуйте! Как решить эту задачу? Приведенный пример сверху не подходит .

Давайте напишем действительно полезную программу! Вы наверняка уже устали считать дискриминант для квадратных уравнений? Давайте автоматизируем этот процесс.

На вход программы подаются три целых числа — коэффициенты уравнения ax^2 + bx + c = 0ax
2
+bx+c=0

Гарантируется, что a neq 0a

=0.

Выведите через пробел корни уравнения в порядке убывания и округленные «вниз». Если уравнение имеет корень кратности 2 — выведите одно число. Если у уравнения нет действительных корней — выведите «NO»

Для извлечения корней используйте функцию sqrt. Она содержится в библиотеке сmath ( она уже импортирована в коде ). Для округления воспользуйтесь функцией floor ( из той же библиотеки ).

1 0 -4
Sample Output 1:

2 -2
Sample Input 2:

1 2 2
Sample Output 2:

Пожалуйста подскажите как ввести экран ответ дискриминанта

Пожалуйста подскажите как ввести на екран ответь дискриминанта

Подскажите как правильно решить?
Обчислити z = (x1 + y1) / (x2 + y2), де х1, х2 — коренi рiвняння 2х^2 + x — 4 =0.
y1, y2 — коренi рiвняння ay^2 + 2y — 1 = 0. Усi коренi дiйснi.

using namespace std;

int main() <
double a = 2, b, c = -4;
int x1, x2;
double a1, b1 = 2, c1 = -1;
int y1, y2;
float z;

if((b*b — 4*a*c) >= 0 ) <
x1 = ( -1*b + sqrt(b*b — 4*a*c)) / (2 * a);
cout a1;

if((b1*b1 — 4*a1*c1) >= 0) <
y1 = ( -1*b1 + sqrt(b1*b1 — 4*a1*c1)) / (2 * a1);
cout = 0, y1 >= 0, y2 >= 0) <
z = (x1 + y1)/(x2 +y2);
cout

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решить квадратное уравнение

Найти корни квадратного уравнения и вывести их на экран, если они есть. Если корней нет, то вывести сообщение об этом. Конкретное квадратное уравнение определяется коэффициентами a , b , c , которые вводит пользователь.

Квадратное уравнение имеет вид ax 2 + bx + c = 0 . Коэффициенты a , b и c — это конкретные числа, а x надо найти, решив уравнение.

  1. Вычислить дискриминант по формуле d = b 2 — 4ac .
  2. Если дискриминант больше нуля, то вычислить два корня уравнения:
    x1 = (-b+√d) / 2a
    x2 = (-b-√d) / 2a
  3. Если дискриминант равен нулю, то вычислить только один корень (второй будет равен ему).
  4. Если дискриминант отрицателен, то вывести сообщение, что корней нет.

Видео:Алгоритм решения квадратного уравненияСкачать

Алгоритм решения квадратного уравнения

Pascal

квадратное уравнение паскаль

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Язык Си

Ключ -lm при компиляции gcc.

Видео:0.Блок схема. 8 классСкачать

0.Блок схема. 8 класс

Python

Видео:Информатика 8 класс. Решение линейного и квадратного уравнения на PascalABCСкачать

Информатика 8 класс. Решение линейного и квадратного уравнения на PascalABC

КуМир

Видео:Алгоритм решения квадратного уравнения | Алгебра 8 класс #35 | ИнфоурокСкачать

Алгоритм решения квадратного уравнения | Алгебра 8 класс #35 | Инфоурок

Basic-256

  • Total 0
  • 0
  • 0
  • 0
  • 0

квадратное уравнение паскаль

var
a,b,c,d,x1,x2: real;
begin
write(‘a=’); readln(a);
write(‘b=’); readln(b);
write(‘c=’); readln(c);
d := b*b — 4*a*c;
if d > 0 then begin
x1 := (-b + sqrt(d)) / (2*a);
x2 := (-b — sqrt(d)) / (2*a);
writeln(‘x1=’,x1:3:2,’; x2=’,x2:3:2);
end
else
if d = 0 then begin
x1 := (-b) / (2*a);
writeln(‘x=’,x1:5:2);
end
else
writeln(‘Корней нет’);
end.

main() <
float a,b,c,d,x1,x2;
printf(«a=»); scanf(«%f»,&a);
printf(«b=»); scanf(«%f»,&b);
printf(«c=»); scanf(«%f»,&c);
d = b*b — 4*a*c;
if (d>0) <
x1 = (-b + sqrt(d)) / (2*a);
x2 = (-b — sqrt(d)) / (2*a);
printf(«x1=%.2f; x2=%.2f», x1, x2);
>
else
if (d = 0) <
x1 = -b / (2*a);
printf(«x1=%.2f; x2=%.2f», x1, x2);
>
else printf(«Корней нет.»);
printf(«n»);
>

Ключ -lm при компиляции gcc.

python квадратное уравнение

print(«Введите коэффициенты для квадратного уравнения (ax^2 + bx + c = 0):»)
a = float(input(«a = «))
b = float(input(«b = «))
c = float(input(«c = «))

discr = b**2 — 4 * a * c;
print(«Дискриминант D = %.2f» % discr)
if discr > 0:
import math
x1 = (-b + math.sqrt(discr)) / (2 * a)
x2 = (-b — math.sqrt(discr)) / (2 * a)
print(«x1 = %.2f nx2 = %.2f» % (x1, x2))
elif discr == 0:
x = -b / (2 * a)
print(«x = %.2f» % x)
else:
print(«Корней нет»)

input «a = «, a
input «b = «, b
input «c = «, c
d = b^2 — 4*a*c

if d > 0 then
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b — sqrt(d)) / (2*a)
print «x1 = » + x1 + «, x2 = » + x2
else
if d = 0 then
x = -b / (2*a)
print «x = » + x
else
print «Корней нет»
endif
endif

Команда decimal указывает сколько знаков после запятой следует выводить.

🎬 Видео

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Блок-схемы для начинающих (Блок схемы алгоритмов)Скачать

Блок-схемы для начинающих (Блок схемы алгоритмов)

решаем квадратные уравнения в ExcelСкачать

решаем квадратные уравнения в Excel

1 1 126 Составить алгоритм решения ребуса ABCD DCBA = 2727Скачать

1 1 126 Составить алгоритм решения ребуса ABCD   DCBA = 2727

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Программа, определяющая корни квадратного уравнения. Язык программирования Python.Скачать

Программа, определяющая корни квадратного уравнения. Язык программирования Python.

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Java - урок 5.4 (Практика - решаем квадратное уравнение)Скачать

Java - урок 5.4 (Практика - решаем квадратное уравнение)

САМЫЙ ЛЕГКИЙ способ решения Квадратного Уравнения #shorts #youtubeshortsСкачать

САМЫЙ ЛЕГКИЙ способ решения Квадратного Уравнения #shorts #youtubeshorts

ПРОСТЕЙШИЙ способ решения Квадратного Уравнения #shorts #youtubeshortsСкачать

ПРОСТЕЙШИЙ способ решения Квадратного Уравнения #shorts #youtubeshorts

Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения

Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс
Поделиться или сохранить к себе: