Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Видео:Неравенство, два способаСкачать

Неравенство, два способа

Методика изучения неравенств

Федеральное агентство по образованию

Саратовский Государственный Университет им.Н.Г. Чернышевского

Кафедра математики и методов её преподавания

на тему: Методика изучения неравенств

Выполнила: студентка 4 курса 421 группы ММФ

Проверил: зав. каф. к. п. н. Кондаурова И.К.

Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Содержание

1. Методика изучения темы «Неравенства» в начальной школе. 5

2. Методика изучения неравенств в старших классах. 11

2.1 Содержание и роль линии уравнений и неравенств в современном школьном курсе математики. 11

2.2 Классификация преобразований неравенств и их систем.. 13

2.3 Общая последовательность изучения материала линии неравенств. 15

3. Методика изучения основных классов неравенств и их систем.. 19

Список использованных источников. 27

Видео:Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Введение

Тема «Неравенства» занимает важное место в курсе алгебры. Она богата по содержанию, по способам и приемам решения неравенств, по возможностям ее применения при изучении ряда других тем школьного курса алгебры. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Анализ диссертационных работ, посвященных методике изучения темы «Неравенства» в основной школе, показал, что в настоящий момент имеется ряд исследований, раскрывающих ее различные аспекты. Одним из первых было диссертационное исследование К.И. Нешкова, в котором сформулированы принципы отбора содержания и выделен необходимый объем материала по теме. При этом большая роль отводилась упражнениям.

Исследования: М.В. Паюл, И.М. Степуро посвящены вопросам взаимосвязи понятий неравенства, уравнения и функции; М.П. Комова, Г.Н. Солтан — доказательствам и решению неравенств на геометрическом материале; Е.Ф. Недошивкина — внутрипредметным связям при изучении уравнений и неравенств в курсе математики 4-8-х классов; Н.Б. Мельниковой, Д.Д. Рыбдаловой — прикладным аспектам изучения неравенств в средней школе.

Итак, можно констатировать тот факт, что отдельные вопросы методики обучения понятию неравенства и решению конкретных неравенств в школьном курсе математики освещены достаточно полно.

Несмотря на значительный положительный опыт в методике преподавания темы «Неравенства», как показывает анализ результатов тестов, контрольных, выпускных, вступительных экзаменационных работ, учащиеся средней школы недостаточно полно владеют основными знаниями и умениями по решению неравенств. В качестве аргумента приведем анализ результатов участия России в международных исследованиях TIMSS (6-ое место из 36 стран участников), который показал, что наибольшую озабоченность по курсу алгебры вызывает качество знаний и умений учащихся по теме «Неравенства».

Видео:Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать

Удалили с экзамена ОГЭ Устное Собеседование shorts #shorts

1. Методика изучения темы «Неравенства» в начальной школе.

Работа над неравенствами ведется с I класса, органически сочетаясь с изучением арифметического материала. Программа по математике для I-III классов ставит задачу выполнять сравнение чисел, а также сравнение выражений с целью установления отношений «больше», «меньше», «равно»; научить записывать результаты сравнения с помощью знаков Содержание и роль линии уравнений и неравенств в современном школьном курсе математикии читать полученные неравенства.

Числовые неравенства учащиеся получают в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками Содержание и роль линии уравнений и неравенств в современном школьном курсе математикисоединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Если одно число больше (меньше) другого или одно выражение имеет значение больше (меньше), чем другое выражение, то, соединенные соответствующим знаком, они образуют неравенство. Таким образом, первоначально у младших школьников формируются понятия только о верных неравенствах.

Однако в процессе работы над уравнениями, выражениями и неравенствами с переменной учащиеся, подставляя различные значения переменной, накапливают наблюдения и убеждаются в том, что равенства и неравенства бывают как верные, так и неверные. Такой подход к раскрытию понятий определяет соответствующую методику работы над равенствами, неравенствами, уравнениями.

Ознакомление с неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий.

Сравнение осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел (кружков 7, треугольников 5, кружков больше, чем треугольников, 7 больше, чем 5). В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9 меньше, чем 10, потому что при счете число 9 называют перед числом 10; 5 больше, чем 4, потому что при счете число 5 называют после числа 4.

Установленные отношения записываются с помощью знаков Содержание и роль линии уравнений и неравенств в современном школьном курсе математики, учащиеся упражняются в чтении и записи неравенств.

Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел, начиная с высшего разряда (75>48, так как 7 десятков больше, чем 4 десятка; 75>73, так как десятков поровну, а единиц в первом числе больше, чем во втором).

Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Сравнение величин вызывает трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически в I-III классах предлагать разнообразные упражнения, например:

Подберите равную величину: 7 км 500 м = □ м, 3080 кг= □ т □ кг.

Подберите числовые значения величин так, чтобы запись верной: □ ч 16.

Подобные упражнения помогают детям усвоить не только понятия равных и неравных величин, но и отношения единиц измерения.

Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 дети длительное время упражняются в сравнении выражения и числа (числа и выражения). Первые неравенства вида 3+1>3, 3-1 3), значит, можно записать: 3+1>3 (три плюс один больше, чем три). Аналогичная работа ведется над неравенством 3-1 5 2 5 2 b, то b 3), а других меньше (3 5, х-4>12, 72: х 0, 6+4> □, 7+ □ 0 можно подставить число 1 (1>□), можно 2 (2>□), можно З (3>□) и т.д. После того как названо несколько чисел, полезно обобщить наблюдения (например, во втором неравенстве можно подставить любое число, которое меньше 10-от 0 до 9).

Рассматривая во II классе, например, неравенство х+3 b к неравенству f(a) >f(b), где f-возрастающая функция, или обратный переход.

3б) Переход от неравенства а 0, помещенная на рис.3. В результате определенной тренировки учащиеся привыкают пользоваться такой схемой, а затем ее мысленным образом.

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Видео:Математика это не ИсламСкачать

Математика это не Ислам

3. Методика изучения основных классов неравенств и их систем

Эти классы можно разбить на две группы. Первая группа рациональные неравенства и системы. Наиболее важными классами соответствующие классы неравенств. Вторая группа — иррациональные и трансцендентные неравенства и системы. В состав этой группы входят иррациональные, показательные, логарифмические и тригонометрические неравенства.

Первая группа получает достаточное развертывание, вплоть до формирования прочных навыков решения, уже в курсе алгебры неполной средней школы. Вторая же группа в этом курсе только начинает изучаться, причем рассматриваются далеко не все классы, а окончательное изучение происходит в курсе алгебры и начал анализа. При изучении второй группы приходится опираться на общие понятия и методы, относящиеся к линии неравенств. Указанное различие, однако, не является единственным, которое противопоставляет эти две группы. Более существенным является учет особенностей, связанных с развертыванием материала каждой из этих групп. По сравнению с первой группой неравенства, входящие в состав второй, в процессе их изучения обнаруживают значительно более сложные связи с другими линиями курса математики — числовой, функциональной, тождественных преобразований и др.

Последовательность изучения различных классов неравенств и систем различна в разных учебниках. Однако количество возможных вариантов для последовательности их введения не слишком велико — классы находятся в определенной логической зависимости друг от друга, которая предписывает порядок их появления в курсе.

Наличие такого разнообразия подходов затрудняет методическое описание, поскольку принятие того или иного пути требует различных приемов изучения материала.

Отметим ряд особенностей в изучении неравенств:

1) Как правило, навыки решения неравенств, за исключением квадратных, формируются на более низком уровне, чем уравнений соответствующих классов. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Отмеченное обстоятельство отчасти смягчается другими особенностями изучения неравенств, поэтому в целом можно считать, что содержательная сторона неравенств, возможности их приложений от этого не страдают.

2) Большинство приемов решения неравенств состоит в переходе от данного неравенства a>b к уравнению а=b и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства. Пожалуй, такого перехода не производится лишь при рассмотрении линейных неравенств, где в нем нет необходимости из-за простоты процесса решения таких неравенств. Эту особенность необходимо постоянно подчеркивать, с тем? чтобы переход к уравнениям и обратный переход превратились в основной метод решения неравенств; в старших классах он формализуется в виде «метода интервалов».

3) В изучении неравенств большую роль играют наглядно-графические средства.

Указанные особенности могут быть использованы для обоснования расположения материала, относящегося к неравенствам, количества заданий, необходимых для усвоения программного минимума.

Приведем примеры. Первая особенность может быть истолкована так: при выполнении одного и того же числа упражнений техника решения неравенств какого-либо класcа будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий. Вторая особенность объясняет то, что темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений. В соответствии с третьей особенностью изучение неравенств зависит от качества изучения функциональной линии школьного курса (построение графиков и графическое исследование функций).

Перечисленные особенности показывают, что изучение предшествующего материала сильно влияет на изучение неравенств. Поэтому роль этапа синтеза в изучении неравенств особенно возрастает.

Проиллюстрируем указанные особенности на материале квадратных неравенств. Изучение этого раздела курса следует за изучением квадратного уравнения и квадратного трехчлена. К моменту его изучения учащиеся умеют строить графики квадратичной функции, причем на них отмечаются нули функции, если они существуют. Поэтому переход к рассмотрению квадратных неравенств можно осуществить как переход от неравенства ах²+bх+с>0 к построению и изучению графика функции у=ах²+bх+с. Поскольку возможны различные случаи расположения графика относительно оси абсцисс, лучше начать с рассмотрения конкретного задания, для которого соответствующий квадратный трехчлен имеет различные корни. На этом примере устанавливается соответствие между двумя задачами: «Решить неравенство ах²+bх+с>0»; «Найти значения аргумента, для которых значения функции у=ах²+bх+с положительны». Посредством этой связи производится переход к построению графика функции. Нули этой функции разбивают ось абсцисс на три промежутка, в каждом из которых она сохраняет знак, поэтому ответ считывается прямо с чертежа. Другие случаи решения квадратных неравенств (у квадратного трехчлена ах²+bх+с не больше одного корня) требуют дополнительного рассмотрения, но опираются на то же соответствие.

В процессе дальнейшего изучения устанавливается, что нет нужды в точно вычерченном графике квадратного трехчлена, достаточно наметить только положение корней, если они есть, и учесть на эскизе нужные особенности графика (направление ветвей параболы).

В школьном курсе математики ограничиваются изучением только неравенств основных классов; задания, которые требуют сведения к основным классам, встречаются сравнительно редко. Например, не изучаются биквадратные неравенства.

Из числа типов заданий, в которых проявляется прикладная роль неравенств в курсе алгебры, отметим нахождение области определения функции и исследование корней уравнений в зависимости от параметров.

Иррациональные и трансцендентные неравенства

Определения различных классов иррациональных и трансцендентных неравенств, которые приводятся в школьных учебниках, обычно имеют вид: «Неравенство называется иррациональным (показательным в т.д.), если оно содержит неизвестное под знаком корня (в показателе степени и т.д.)». Несмотря на формальную расплывчатость, определения такого типа достаточны для того, чтобы указать некоторую область, уравнения или неравенства из которой решаются способами, изучаемыми при прохождении соответствующей темы. В каждом из таких классов можно указать подклассы простейших уравнений или неравенств, к которым и сводится решение более сложных заданий.

Каждый простейший класс тесно связан с классом соответствующих функций; по существу, формулы решений и исследование простейших неравенств здесь опираются на свойства функций. В начале изучения каждого простейшего класса учащимся приходится преодолевать трудности, связанные с освоением специфической символики, в частности узнавать новые формы записи чисел и числовых областей, в которых должен быть получен ответ к заданию. При решении заданий часто используются наряду с известными специфические для соответствующего класса функций тождества. Значительно чаще, чем в предшествующей части курса, в решении неравенств используются неравносильные преобразования, широко используются подстановки. Поэтому весь этот материал требует достаточной логической грамотности учащихся.

Специфика трансцендентных неравенств. При рассмотрении различных классов трансцендентных неравенств необходимо уделять достаточное внимание формированию навыка применения тождеств для преобразования данных неравенств. Особенно ярко это проявляется в тригонометрии, поэтому при изучении тригонометрических неравенств большое значение приобретают задания и системы вопросов, связанные с распознаванием применимости того или иного тождества, возможности приведения уравнения или неравенства к определенному виду.

Здесь значительные трудности связаны с тем, что некоторые тождества, используемые в преобразованиях, приводят к изменению области определения. К числу таких тождеств относятся, например, такие:

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Использование этих тождеств слева направо может привести к потере корней, а справа налево — к появлению посторонних корней. Рассмотрим примеры.

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Здесь учет ограничений при использовании тождества для логарифма произведения выполнен при втором переходе, в результате чего неравенство преобразовалось в систему неравенств, из которых два последних позволяют сохранить исходную область определения неизменной.

В результате выполнения аналогичных заданий можно сделать вывод: если приходится пользоваться преобразованиями, расширяющими область определения, то для сохранения равносильности необходимо дополнительно ввести ограничения, сохраняющие исходную область определения неизменной.

Видео:Решение логарифмических уравнений #shortsСкачать

Решение логарифмических уравнений #shorts

Заключение

В данной курсовой работе мы рассмотрели методику преподавания темы «Неравенства» в начальных и старших классах средней школы.

Неравенство числовое — высказывание вида а b, где или b, то b а.

К обеим частям истинного (верного) числового неравенства можно прибавлять одно и то же число, в результате получим истинное неравенство. Умножая обе части истинного числового неравенства а bс.

Содержание линии неравенств развертывается на протяжении всего школьного курса математики. Учитывая важность и обширность материала этой линии, еще раз отметим целесообразность на заключительных этапах обучения предлагать достаточно разнообразные и сложные задания, рассчитанные на активизацию наиболее существенных компонентов этой линии, основных понятий и основных приемов решения, исследования и обоснования заданий.

Видео:Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |

Список использованных источников

1. Бантова М.А., Бельтюкова Г.В. Методика преподавания математики в начальных классах: Уч. пос. для уч-ся школ. отд-й пед. уч-щ / Под ред. М.А. Бантовой. -3-е изд., испр. — М.: Просвещение, 1984 г. — 335 с. — ил.

2. Бантова М.А. Методическое пособие к учебнику математики/М.А. Бантова, Т.В. Бельтюкова, С.В. Степанова. – М.: Просвещение, 2001 – 64 с.

3. Вавилов В.В., Мельников И.И. и др. «Задачи по математике. Уравнения и неравенства» М.: Изд. «Наука» 1987 г.

4. Давыдов В.В., С.Ф. Горбов и др. Обучение математике. – М.: Мирос, 1994. – 192 с.

5. Истомина Н.Б. Методика обучения математике в начальных классах. – М.: Академия, 2000. – 288 с.

6. Кипнис И.М. Задачи на составление уравнений и неравенств: Пос. для учит-й. — М.: Просвещение, 1980 г. -68 с.

7. Левитас Г.Г. Современный урок математики. Методика преподавания. ПТУ-М.: Высшая школа, 1989. -88 с. — ил.

8. Методика преподавания математики в средней школе: Общая методика: Уч. пос. для студ. пед. инст-в по спец.2104 «Математика» и 2105 «Физика»/ А. Блох, Е.С. Канин и др. Сост.Е.С. Черкасов, А.А. Столяр. — М.: Просвещение, 1985. -336 с.

9. Методика преподавания математики в средней школе: Частная методика: Уч. пос. для студ. пед. инст-в по физ-мат. спец-м/ А. Блох, В.А. Гусев, Г.В. Дорофеев и др. Сост.В.И. Мишин. — М.: Просвещение, 1987. -416 с.: ил.

10. Методика преподавания математики в средней школе. /В.А. Ованесян и др. – М: Просвещение, 1980. – 368 с.

11. Олехник С.Н., Потапов М.К., Пасиченко П.И. Нестандартные методы решения уравнений и неравенств. — М.: МГУ, 1991 г.

Видео:учимся решать линейные неравенства :)Скачать

учимся решать линейные неравенства :)

Содержание и роль уравнений в школьном курсе математики
методическая разработка по алгебре по теме

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объевляется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач. В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, их систем или углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную схему: они дополняют ее новым фактическим содержанием, не меняя сложившейся связи, соединяющие различные классы.

Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Скачать:

ВложениеРазмер
soderzhanie_i_rol_uravneniy_v_sovremennom_shkolnom_kurse_matematiki.docx20.34 КБ

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Предварительный просмотр:

Содержание и роль уравнений в современном школьном курсе математики.

Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучени/

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий.

Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования:

a) уравнение как средство решения текстовых задач;

b) уравнение как особого рода формула, служащая в алгебре объектом изучения;

c) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.

Каждое этих представлений оказалось в том или ином отношении полезным.

Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно — методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность

линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность

линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений

в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики

Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k — натуральное число, большее 1) и ax=b.

Связь линии уравнений с числовой линией двусторонняя. Приведенный пример показывает влияние уравнений на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений. Например, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х2 = b, где b—неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом.

Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

С функциональной линией непосредственно связан также и небольшой круг вопросов школьного курса математики, относящихся к дифференциальным и функциональным уравнениям. Сама возможность возникновения дифференциального уравнения кроется в наличии операции дифференцирования (может быть поставлен вопрос о нахождении для заданной функции ¦ другой функции F, такой, что F’ (x)=f (х)).

Однако сама по себе возможность выделения дифференциальных уравнений в школьном курсе математики еще не следует из того факта, что имеются формальные основания для их рассмотрения. Как известно, теория дифференциальных уравнений обладает большой сложностью. В школьном обучении эта теория представлена лишь своими начальными частями, которые не образуют связного целого, а относятся к различным конкретным, по большей части прикладным вопросам.

По-видимому, понятие дифференциального уравнения допускает более широкое представление в школьном курсе. В настоящее время этот вопрос является открытой методической проблемой.

В отличие от дифференциальных функциональные уравнения (неизвестным в которых, так же как и в дифференциальных, является функция) почти не представлены в школьном курсе математики. Единичные задания, связанные с этим классом уравнений, могут быть использованы при рассмотрении показательной функции, в связи с понятием обратной функции и др.

В качестве последнего примера отметим взаимосвязь линии уравнений с алгоритмической линией. Влияние же алгоритмической линии на линию уравнений заключается прежде всего в возможности использования ее понятий для описания алгоритмов решения уравнений и систем различных классов.

Видео:МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МОДУЛЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Лекция III УРАВНЕНИЯ И НЕРАВЕНСТВА В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

Видео:Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Решение уравнений и неравенств составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Уравнения и неравенства уже сами по себе представляют интерес для изучения, так как именно с их помощью на символическом языке записываются важнейшие задачи, связанные с познанием реальной действительности. Этой ролью уравнений и неравенств в естествознании определяется и их роль в школьном курсе математики. Но дело не только в этом. При изучении любой темы уравнения и неравенства могут быть использованы как эффективное средство закрепления, углубления, повторения и расширения теоретических знаний, для развития творческой математической деятельности учащихся. Операции над числами и свойства этих операций, функции и свойства функций, метрические соотношения между элементами геометрических фигур, а также связанные с этими вопросами тождества и тождественные преобразования в процессе изучения сразу же могут находить отражение в упражнениях на решение уравнений и неравенств. Например, ознакомившись с распределительным законом умножения относительно сложения, учащиеся могут применить его к решению уравнений вида (* + 5) • 2 = 16, 14* + 27х = 656; в 7 классе решение вопроса: может ли уравнение * 4 25* 3 + 13* 2 — 20* +1=0 иметь отрицательные корни? — не только потребует применения знаний свойств степеней рациональных чисел, но и будет способствовать развитию исследовательских способностей учащихся. Возможность разнообразить формы упражнений (решить заданное уравнение (неравенство); составить уравнение (неравенство) по заданному множеству его решений; решить задачу с помощью уравнения (неравенства); составить задачу по заданному уравнению (неравенству); составить два уравнения (неравенства), имеющие одно и то же множество решений и т. д.) способствует развитию сообразительности, находчивости и инициативы учащихся.

Графическое решение уравнений и неравенств раскрывает значение методов аналитической геометрии, играет большую роль в развитии пространственного воображения. Решение задач из разных разделов математики с помощью уравнений и неравенств формирует представление о единой математике и относительном характере её расчленения на арифметику, алгебру, геометрию.

Значительна роль метода уравнений и неравенств в решении задач жизненного содержания. Решение задач, связанных с основами современного производства, экономикой народного хозяйства, со смежными дисциплинами может служить одним из эффективных способов осуществления принципа связи преподавания математики с жизнью, подготовки учащихся к свободному выбору будущей профессии.

Истоки алгебраических методов решения практических задач связаны с наукой Древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX — VI вв. до н. э.), имела расчетный характер. Однако уже тогда возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, фактически, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться первые алгебраические представления. Сначала был создан метод решения текстовых задач. Он послужил в дальнейшем основой для выделения алгебраического компонента и его независимого изучения. Это изучение осуществлялось в период VI — X вв. н. э. сначала арабскими математиками, выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения. Именно они в итоге длительного поиска создали язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т.д.).

На рубеже XVI — XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее её развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилось, какую важную роль играет понятие уравнения в системе алгебраических понятий.

Открытие координатного метода (Р. Декарт, XVII в.), развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связываюсь теперь уже с тремя главными областями своего функционирования: 1) уравнение как средство решения текстовых задач; 2) уравнение как особого рода формула, которая служит в алгебре объектом изучения; 3) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), являющиеся его решением.

Таким образом, уравнение как общсматсматичсскос понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования.

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линиюлинию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики. Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

  • а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, так как он связан с обучением приемам, которые используются в приложениях математики. Прикладное значение уравнений, неравенств и их систем определяется тем, что они используются в математическом моделировании.
  • б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых. в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекты необходимы в курсе школьной математики.
  • в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики.

Эта линия тесно связана с числовой линией. Все числовые области, которые рассматриваются в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Связь линии уравнений и неравенств с числовой линией двусторонняя. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств. 11апример, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х 1 = Ь, где b — неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом.

Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, которые разрабатываются в линии уравнений и неравенств, к исследованию функций (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д. С другой стороны, функциональная линия оказывает существенное влияние на содержание линии уравнений и неравенств и на стиль её изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

Следует отметить взаимосвязь линии уравнений и неравенств с алгоритмической линией. Само содержание понятия алгоритма может быть выделено на основе анализа процесса решения уравнений различных классов. Влияние же алгоритмической линии на линию уравнений и неравенств заключается прежде всего в возможности использования её понятий для описания алгоритмов решения уравнений, неравенств и систем различных классов.

📸 Видео

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать

Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnline

ЕГЭ. Математика. Повторение. Решение уравнений. Задачи, сводящиеся к решению уравнений и неравенствСкачать

ЕГЭ. Математика. Повторение. Решение уравнений. Задачи, сводящиеся к решению уравнений и неравенств

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline
Поделиться или сохранить к себе: