Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности.
Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям.
Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд.
Потребовав, чтобы функция и(х> t), определяемая формулой (12), удовлетворяла начальному условию , получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно.
Так как при то ряд при также сходится абсолютно и равномерно.
Поэтому функция и(х, t) — сумма ряда (12) — непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при.
Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание.
В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее.
Возможно вам будут полезны данные страницы:
Пример:
Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи . собственные функции Хп(х) = мп пх.
При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п так что Решение задачи (15)—(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда . Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие .
Решение задач:
Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци — как решение задачи Задача (8)—(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям < краевой задачи . Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем ! Пользуясь начальным условием для v(x, t).
Метод Фурье для уравнения теплопроводности. |
Находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20).
Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)—(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3.
Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Численные методы математической физики - Решение смешанной задачи для уравнения теплопроводностиСкачать
Решение систем линейных алгебраических уравнений
Главная > Решение
Информация о документе | |
Дата добавления: | |
Размер: | |
Доступные форматы для скачивания: |
7.1 Метод сеток для решения смешанной задачи для уравнения параболического типа (уравнения теплопроводности)
Смешанная задача означает, что следует найти искомую функцию, удовлетворяющую заданному уравнению в частных производных, краевым, а так же начальным условиям.
Рассмотрим смешанную задачу для однородного уравнения теплопроводности
, k =const>0.
Задано начальное условие
и заданы краевые условия первого рода
Требуется найти функцию u (x,t) , удовлетворяющую в области D (0 x a , 0 t T) условиям (7.5) и (7.6). Физически это можно представить как стержень, на концах которого поддерживается требуемый температурный режим, заданный условиями (7.6).
Рисунок 10 – Неявная схема
При проведении замены получим , т.е. k =1. Задача решается методом сеток : строим в области D равномерную сетку с шагом h по оси x и шагом по t (см. рисунок 10).
Приближенное значение искомой функции в точке — обозначим через . Тогда ; ; i =0,1. n ; ;
j =0,1. m ; .
Заменим производные разностными отношениями
;
.
В результате получим неявную двухслойную схему с погрешностью O ( +h 2 )
.
Используя подстановку , выразим из этой схемы u i,j-1
,
где: u 0, j = 1 ( t j ) ; u n , j = 2 ( t j ) .
Получаем разностную схему, которой аппроксимируем уравнение (7.4). Эта схема (7.7) неявная, и выглядит так, как показано на рисунке 10. При построении схемы (7.7) получается система линейных уравнений с трехдиагональной матрицой. Решив ее любым способом (в частности, методом прогонки), получаем значения функции на определенных временных слоях. Так, на нулевом временном слое используем начальное условие U i,0 =f ( x i ), т.к. j =0. Эта неявная схема более устойчива для любых значений параметра >0.
Есть и явная схема (рисунок 11), но она устойчива только при , т.е. при .
Рисунок 11 — Явная схема
7.2 Решение задачи Дирихле для уравнения Лапласа методом сеток
Рассмотрим уравнение Лапласа
.
Уравнение (7.8) описывает распространение электромагнитных волн(полей). Будем рассматривать уравнение Лапласа в прямоугольной области с краевыми условиями
; ; ; ,
где -заданные функции. Заметим, что чаще всего область бывает не прямоугольной.
Введем обозначения u ij = u ( x i , y j ). Накладываем на прямоугольную область сетку ; i =0,1,…, n ; ; j =0,1,…, m . Тогда , .
Частные производные аппроксимируем по формулам
и заменим уравнение Лапласа конечно-разностным уравнением
Рисунок 12 – Схема “крест”
,
где: i =1,…, n -1, j =1. m -1 (т.е. для внутренних узлов).
Погрешность замены дифференциального уравнения разностным составляет величину О(). Выразим u i , j при h =l, и заменим систему
Получаем систему (7.10) линейных алгебраических уравнений, которые можно решить любым итерационным методом (Зейделя, простых итераций и т.д.). При этом построении системы использовалась схема типа “крест”(рисунок 12). Строим последовательность итераций по методу Гаусса-Зейделя
,
где s -текущая итерация.
Условие окончания итерационного процесса
.
Условие (7.11) ненадежно и на практике используют другой критерий
где .
Схема “крест “- явная устойчивая схема ( малое изменение входных данных ведет к малому изменению выходных данных).
7.3 Решение смешанной задачи для уравнения гиперболического типа методом сеток
Рассмотрим уравнение колебания однородной и ограниченной струны.
Задача состоит в отыскании функции u ( x , t ) при t >0, удовлетворяющей уравнению гиперболического типа
,
где: 0 x a ; 0 t