Сложные системы уравнений 9 класс

«Системы уравнений». 9-й класс

Класс: 9

Презентация к уроку

Загрузить презентацию (412 кБ)

При помощи учащихся класса были повторены способ подстановки и сложения. Графический – был рассмотрен вместе (слайды показывались на стене): дети рассказывали о функции и схематически изображали её график мелом, затем выцветал правильный и, было видно, прав ли ученик. В этом способе повторили нахождение координат данной точки, их запись.
Далее устно рассматривались решения различных тестовых заданий, где применялся графический способ решения систем уравнений.
В конце урока проводится маленькая самостоятельная работа с аналогичными заданиями.

Цели:

  • повторить способы решения систем уравнений;
  • акцентировать внимание на возможность решения систем различными способами;
  • научить, при решении систем уравнений, записывать верно ответ
  • продолжить обучать умению
  • планировать самостоятельную работу;
  • осваивать информацию и логически ее перерабатывать;
  • вырабатывать собственную позицию, обосновывать ее и защищать (обосновывать свой способ решения, свой результат).

Оборудование:

  • компьютер,
  • мультимедийный проектор,
  • карточки.

I этап урока (организационный)

Учитель сообщает тему урока, цели.

II этап урока (повторение)

1. Как вы понимаете выражение – «система уравнений»?
2. Что значит: решить систему уравнений? (Решить систему – это значит найти пару значений переменных, которая обращает каждое уравнение системы в верное равенство.)
3. Какие способы решения систем вы знаете? (Подстановки, сложения и графический.)

Вспомнить эти способы нам помогут …

Предварительно по работе с системами подготовлены и проверены ученики данного класса.

1. Способ подстановки

О решении систем этим способом рассказывает …

Далее вместе с классом решаем систему этим способом на доске и в тетради.

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 классОтвет: (0; 3); (–3; 6)

2. Способ сложения

О решении систем этим способом рассказывает …

Далее вместе с классом решаем систему этим способом на доске и в тетради.

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс
Сложные системы уравнений 9 класс
Сложные системы уравнений 9 классСложные системы уравнений 9 класс
Сложные системы уравнений 9 класс

3. Графический способ.

Рассказывает учитель с помощью всех учащихся.

Слайд 5

  • Что нужно сделать для решения систем графическим способом? (Построить графики функций и найти координаты точек пересечения графиков. Для этого из каждого уравнения нужно выразить переменную у.)
  • Выразим из обоих уравнений переменную у.
  • Что можно сказать о первом уравнении? (Это уравнение функции обратной пропорциональности. График – гипербола, состоящая из двух ветвей, расположенных в первой и третьей координатных четвертях.)
  • Как построить гиперболу? (Строим на доске, проверяем с помощью слайда)
  • Что можно сказать о втором уравнении? (Это уравнение квадратичной функции. График – парабола, полученная из графика функции Сложные системы уравнений 9 класспутём перемещения на три единицы вверх по оси ординат.)
  • Сколько точек пересечения получили? (1)
  • Как найти её координаты?
  • От чего зависит количество решений системы уравнений? (От количества точек пересечения графиков функций.)

Физминутка

Выполняем несколько заданий из материалов ГИА (по слайдам)

Задание №1. Слайд 6
Задание №2. Слайд 7
Задание №3. Слайд 8
Задание №4 Слайд 9
Задание №5. Слайд 10

Запишем домашнее задание: П 3.5, с 150.

№ 434 (а) – способ сложения;
№ 435 (а) – способ подстановки;
№ 436 (а) – графически.

III этап урока (заключительный)

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Основные методы решения систем повышенной сложности

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Сложные системы уравнений 9 класс

На этом уроке мы продолжим изучение всех трех основных методов решения систем уравнений и их комбинаций на примере решения систем повышенной сложности. А также рассмотрим некоторые специфические приемы для упрощения различных типов систем.

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Сложные системы уравнений 9 классОткрываем новые знания

Решите графическим методом систему уравнений:

Сложные системы уравнений 9 класс

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Сложные системы уравнений 9 класс

Построим графики уравнений Сложные системы уравнений 9 класс

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Сложные системы уравнений 9 классПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Сложные системы уравнений 9 класс

Построим графики уравнений Сложные системы уравнений 9 класс

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Сложные системы уравнений 9 классОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Сложные системы уравнений 9 класс

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Сложные системы уравнений 9 класс

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Сложные системы уравнений 9 класс

Пусть (х; у) — решение системы.

Выразим х из уравнения Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Подставим найденное выражение в первое уравнение:

Сложные системы уравнений 9 класс

Решим полученное уравнение:

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Сложные системы уравнений 9 класс

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Сложные системы уравнений 9 класс

Подставим найденное выражение в первое уравнение системы:

Сложные системы уравнений 9 класс

После преобразований получим:

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Сложные системы уравнений 9 класс

Подставим во второе уравнение Сложные системы уравнений 9 класстогда его можно переписать в виде:

Сложные системы уравнений 9 класс

Теперь выразим х через у из первого уравнения системы:

Сложные системы уравнений 9 класс

Подставим в полученное ранее уравнение ху = 2:

Сложные системы уравнений 9 класс

Корни этого уравнения: Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Сложные системы уравнений 9 класс

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Сложные системы уравнений 9 класс.

Корни этого уравнения: Сложные системы уравнений 9 класс

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Сложные системы уравнений 9 класс

2) Сложные системы уравнений 9 класс, получим уравнение Сложные системы уравнений 9 класскорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Сложные системы уравнений 9 класс

Обозначим Сложные системы уравнений 9 класс

Второе уравнение системы примет вид:

Сложные системы уравнений 9 класс

Решим полученное уравнение. Получим, умножая обе части на 2а:

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Осталось решить методом подстановки линейные системы:

Сложные системы уравнений 9 класс

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Сложные системы уравнений 9 класссм.

Воспользуемся теоремой Пифагора: Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Решим систему. Выразим из первого уравнения у:

Сложные системы уравнений 9 класс

Подставим во второе уравнение:

Сложные системы уравнений 9 класс

Корни уравнения: Сложные системы уравнений 9 класс

Найдём Сложные системы уравнений 9 класс

С учётом условия Сложные системы уравнений 9 классполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Сложные системы уравнений 9 класс— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Сложные системы уравнений 9 класс

Вычтем из второго уравнения первое. Получим:

Сложные системы уравнений 9 класс

Дальше будем решать методом подстановки:

Сложные системы уравнений 9 класс

Подставим в первое уравнение выражение для у:

Сложные системы уравнений 9 класс

Корни уравнения: Сложные системы уравнений 9 класс(не подходит по смыслу задачи).

Найдём у из уравнения:

Сложные системы уравнений 9 класс

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Сложные системы уравнений 9 класссимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сложные системы уравнений 9 класс, то есть не меняется. А вот уравнение Сложные системы уравнений 9 классне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сложные системы уравнений 9 класс, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Сложные системы уравнений 9 класс

переставить местами неизвестные х и у, то получим систему:

Сложные системы уравнений 9 класс

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Сложные системы уравнений 9 класс

Сначала научитесь выражать через неизвестные Сложные системы уравнений 9 классвыражения:

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Сложные системы уравнений 9 класс

Присылайте задания в любое время дня и ночи в ➔ Сложные системы уравнений 9 классСложные системы уравнений 9 класс

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

🎥 Видео

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебраСкачать

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебра

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Алгебра 9 класс. Решение систем уравнений через подстановку.Скачать

Алгебра 9 класс. Решение систем уравнений через подстановку.

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)Скачать

Алгебра 9 класс (Урок№25 - Решение систем уравнений второй степени.)

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Системы уравнений с двумя переменными - 9 класс алгебраСкачать

Системы уравнений с двумя переменными - 9 класс алгебра

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать

Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | Математика

Система с тремя переменнымиСкачать

Система с тремя переменными

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.
Поделиться или сохранить к себе: