В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений, которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.
Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.
У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.
1 . (x-1)(x-7)(x-4)(x+2)=40
Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой — число.
1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.
2. Перемножим их.
3. Введем замену переменной.
В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:
В этом месте замена переменной становится очевидной:
Получаем уравнение
Ответ:
2 .
Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:
1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.
2. Перемножаем каждую пару скобок.
3. Из каждого множителя выносим за скобку х.
4. Делим обе части уравнения на .
5. Вводим замену переменной.
В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :
Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :
Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:
Теперь можем ввести замену переменной:
Получим уравнение:
Ответ:
3 .
Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:
Разделим числитель и знаменатель каждой дроби на х:
Теперь можем ввести замену переменной:
Получим уравнение относительно переменной t:
Ответ:
4 .
Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .
Чтобы его решить,
1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:
2. Сгруппируем слагаемые таким образом:
3. В каждой группе вынесем за скобку общий множитель:
4. Введем замену:
5. Выразим через t выражение :
Отсюда
Получим уравнение относительно t:
Ответ:
5. Однородные уравнения.
Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.
Однородные уравнения имеют такую структуру:
В этом равенстве А, В и С — числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень ( в данном случае степень одночленов равна 2), и свободный член отсутствует.
Чтобы решить однородное уравнение, разделим обе части на
Или на
Или на
Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.
Пойдем первым путем. Получим уравнение:
Сократим дроби, получим:
Теперь мы вводим замену переменной:
И решаем квадратное уравнение относительно замены:
.
При решении уравнения я обычно придерживаюсь такой тактики: нужно уменьшить количество различных выражений, в состав которых входит неизвестное ( принцип «бритвы Оккама» — не нужно множить сущности без нужды), а для этого помогает разложить выражения с неизвестным на множители. Разложим выражение, стоящее в правой части уравнения на множители.
Перенесем все влево, получим:
Теперь мы видим, что перед нами однородное уравнение. Разделим обе части уравнения на , предварительно проверив, что х=1 не является корнем исходного уравнения.
Теперь самое время ввести замену переменной:
Получим квадратное уравнение:
Ответ:
6 .
Это уравнение имеет такую структуру:
Решается с помощью введения вот такой замены переменной:
В нашем уравнении ,тогда . Введем замену:
Теперь возведем каждую скобку в четвертую степень, используя треугольник Паскаля:
Упростим выражение и получим биквадратное уравнение относительно t:
Ответ: или
7 .
Это уравнение имеет такую структуру:
Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.
Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.
Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно
Теперь прикинем, что нам удобнее иметь — квадрат суммы или разности. Рассмотрим, для начала сумму выражений:
Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:
[/pmath]
Введем замену:
Получим квадратное уравнение:
Ответ:
- Рациональные уравнения с примерами решения
- Рациональные уравнения. Равносильные уравнения
- Применение условия равенства дроби нулю
- Пример №202
- Использование основного свойства пропорции
- Пример №203
- Метод умножения обеих частей уравнения на общий знаменатель дробей
- Пример №204
- Пример №205
- Степень с целым показателем
- Решение рациональных уравнений сложного вида в 9-м классе
- 🔥 Видео
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Рациональные уравнения с примерами решения
Содержание:
Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать
Рациональные уравнения. Равносильные уравнения
два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.
Так, например, равносильными будут уравнения
Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.
Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.
1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;
2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;
3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Левая и правая части каждого из них являются рациональными выражениями.
Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.
В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.
Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.
Применение условия равенства дроби нулю
Напомним, что когда
Пример №202
Решите уравнение
Решение:
С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:
Окончательно получим уравнение:
Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.
Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.
Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:
Значит, решая дробное рациональное уравнение, можно:
1) с помощью тождественных преобразований привести уравнение к виду
2) приравнять числитель к нулю и решить полученное целое уравнение;
3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.
Использование основного свойства пропорции
Если то где
Пример №203
Решите уравнение
Решение:
Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.
Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:
По основному свойству пропорции имеем:
Решим это уравнение:
откуда
Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.
Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:
Таким образом, для решения дробного рационального уравнения можно:
1) найти область допустимых значений (ОДЗ) переменной в уравнении;
2) привести уравнение к виду
3) записать целое уравнение и решить его;
4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.
Метод умножения обеих частей уравнения на общий знаменатель дробей
Пример №204
Решите уравнение
Решение:
Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:
Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение
Умножим обе части уравнения на это выражение:
Получим: а после упрощения: то есть откуда или
Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.
Следовательно, число 12 — единственный корень уравнения. Ответ. 12.
Решая дробное рациональное уравнение, можно:
3) умножить обе части уравнения на этот общий знаменатель;
4) решить полученное целое уравнение;
5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.
Пример №205
Являются ли равносильными уравнения
Решение:
Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.
Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.
Степень с целым показателем
Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:
где — натуральное число,
В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи
Рассмотрим степени числа 3 с показателями — это соответственно
В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:
Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что
Нулевая степень отличного от нуля числа а равна единице, то есть при
Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.
Приходим к следующему определению степени с целым отрицательным показателем:
если натуральное число, то
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Решение рациональных уравнений сложного вида в 9-м классе
Разделы: Математика
Цели:
- Обобщить и углубить знания обучающихся по данной теме;
- Научить использовать различные методы решения: метод разложения на множители – группировки, метод замены переменной – подстановки для подведения рациональных уравнений сложного вида к более простому;
- Познакомить с различными видами рациональных уравнений: симметрических, частного случая возвратных уравнений и с методом их решения;
- Побуждать ребят к взаимоконтролю, самоконтролю и самоанализу при выполнении заданий;
- Оказывать взаимовыручку, поддержку со стороны одноклассников – ассистентов.
- Добиваться получения новых знаний через самостоятельное выполнение заданий с последующей взаимопроверкой.
Оборудование: доска раздвижная, листы – задания для устного счета, компьютер, экран.
Время: 90 минут – 2 урока.
1. Проверка домашнего задания (5 минут).
На доске (на обратной стороне) заранее на перемене учащимися записаны решения. Ученики меняются тетрадями друг с другом по парте и после проверки ставят оценки “5” – нет ошибок; “4” – 1 -2 ошибки; “3” – 3-4 ошибки, а более – “ 2”.
2. Устный тест – повторение:
На парте лежат карточки с решениями и ответы к ним, выбрать правильный ответ и объяснить почему?
задания / ответы | 1 | 2 | 3 | 4 |
(х-3) (х+7)=0 | 3; 7 | 3; -7 | -3;7 | -3;-7 |
х 2 – 6х + 5 = 0 | 5;1 | 2;3 | -5;-1 | -2; -3 |
х 2 – 25 = 0 | 0;5 | 1;25 | -5;5 | Нет решения |
х 2 + 4х + 7 = 0 | 3,5; 2 | Нет решения | 2+; 2- | 1; 2,5 |
3(1-х)+2 = 5 – 3х | Нет решения | 3;1 | Множество корней | 0;5 |
Правильные ответы: 1 задание – 2; 2 зад. – 3; 3 зад. – 3; 4 зад. – 2; 5 зад. – 3.
Учитель: Под рациональным уравнением принято понимать уравнение, которое может быть записано в виде: аnx n + an-1x n-1 + … a2x 2 + a1x + a0 =0, где an, an-1, …a0 – заданные числа, а х – неизвестное. Простейшие рациональные уравнения мы решаем с помощью четырех основных методов.
(Метод перехода от равенства, связывающего функции, к равенству, связывающему аргументы; метод замены переменной; метод разложения на множители – группировки; функционально – графический метод).
Мы научились решать рациональные уравнения второй степени, а третьей, четвертой?
А каким методом вы решите уравнение вида a) х 3 – 8 + х – 2 = 0?
Подсказка: желательно подвести к произведению многочленов.
Да, верно, используем метод разложения на множители – группировки. Группируем слагаемые, применим формулы сокращенного умножения и получим произведение нескольких множителей – многочленов в левой части уравнения, а в правой – нуль.
(Вызывается ученик сильный в математике, а если нет, то показывает учитель ход решения).
б) А при таком уравнении х 3 – 3х + 2 = 0 можно использовать метод группировки?
Перепишем уравнение, записав , получим , а теперь сгруппируем (х 3 – х) – (2х -2) = 0. Дальнейшее решение самостоятельно, а один ученик выходит к доске, решает на другой стороне, затем учащиеся сверяют.
Учитель: Вспомним, при решении биквадратных уравнений какой метод мы использовали? Самый распространенный из всех методов – да, метод замены переменной – метод подстановки. Искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху. На сегодняшнем уроке мы это и рассмотрим.
Разберем решение данного уравнения:
Освободимся от знаменателя, t 2 + 4t + 3 = 0, где t ? 0.
Дорешать самостоятельно, дальнейшее решение проецируется на экран.
По формуле решаем второе уравнение =
= = = = =
Ответ: х1 = -5, х2 = 1, х3 = , х4 = .
Учитель: Рассмотрим уравнение вида
г) (х 2 + 10х ) 2 + (х 2 + 5) 2 = 157.
Метод замены переменной легко увидеть, если воспользоваться формулой квадрата суммы для второй скобки. (х 2 + 10х ) 2 + (х 2 +10х + 25) = 157; (Далее решает ученик у доски, а остальные – самостоятельно).
Пусть тогда получим
х 2 + 10х = 11 или х 2 + 10х = -12. Решая эти уравнения, получим
Ответ: <-11; 1; -5 >. +
Учитель: Рассмотрим уравнение вида
Найдем равенство сумм пар чисел -7 + 2 = -1 – 4,
Перемножим между собой первую и третью, вторую и четвертую скобки, получим (х 2 – 5х – 14) ((х 2 – 5х + 4) – 40.
Введем замену: х 2 – 5х – 14 = t, где t – любое число, получим t(t + 18) = 40, t 2 + 18t – 40 = 0.
(Работает учитель, показывая ход решения или ученик с помощью учителя).
Решим данное уравнение по т. Виета
Решим систему уравнений
Ответ: х1 = 2, х2 = 3, х3 = х4 =
Проверка решения данного уравнения с помощью проекции решения на экране.
+1 + 4 = + 2+ 3. Данное условие равенства выполняется, поэтому раскроем скобки, группируя первый множитель с последним и второй с третьим.
Тогда данное уравнение примет вид: (х 2 + 5х + 4) (х 2 + 5х +6) = 24.
Полагая х 2 + 5х = t, получим квадратное уравнение (t +4)(t +6) = 24,
решая его t 2 + 10t =0, t(t + 10) =0, найдем корни t1 =0, t2= -10.
Затем решаем уравнения
Учитель: Уравнения вида а0х n + a1x n-1 + … + akx k + … + a1x + a0 = 0, где коэффициенты членов, равно от стоящих от концов, равны между собой, называют симметрическими уравнениями.
Симметрические уравнения обладают следующими свойствами:
1. Симметрическое уравнение нечетной степени имеет корень х = -1, в чем можно убедиться непосредственной подстановкой;
2. Уравнение четной степени 2n решаются с помощью подстановки
V = x + сводится к уравнению степени n.
Данное уравнение симметрическое, так как коэффициенты равно отстоящих от концов, равны между собой. Степень уравнения нечетная равная 5, поэтому корень данного уравнения х = – 1.
Пусть Разделим левую часть уравнения на х + 1 и получим симметрическое уравнение четвертой степени:
Разделим обе части уравнения на х 2 : 2х 2 + 3х – 16 + 3• + 2• 1/х 2 = 0, и сгруппируем члены уравнения: 2(х 2 + 1/х 2 ) + 3 (1 + ) – 16 = 0.
Используем метод замены переменной при t = x + , возведем в квадрат обе части уравнения, получим t 2 = (x + ) 2 = x 2 + 2• x • + 1/x 2 , тогда x 2 + 1/x 2 = t 2 – 2, и после преобразований получим квадратное уравнение 2 t 2 + 3t – 20 = 0. Находим корни t = = = t1 = , t2 = -4. Таким образом , исходное уравнение четвертой степени равносильно совокупности уравнений x + и x + = -4.
Решив данные уравнения, получим еще четыре корня исходного уравнения.
Ответ: х1 = -1, х2 = -2+, х3 = -2 – , х4 = 2, х5 = .
Учитель: Прошу вас, ребята, решить самостоятельно с последующей проверкой симметрическое уравнение четвертой степени. А почему оно симметрическое?
з) 2х 4 + 3х 3 – 16 х 2 + 3х + 2 = 0.
Разделим обе части уравнения на х 2 , получим 2х 2 + 3х – 16 + + 2/х 2 =0.
Сгруппируем (2х 2 + 2/х 2 ) + (3х+ ) – 16 = 0, 2(х 2 +12/х 2 ) + 3(х+ ) – 16 =0.
Введем метод замены переменной, обозначим х+ = t, возведем в квадрат обе части равенства, получим t 2 = (x + ) 2 = x 2 + 2• x • + 1/x 2 , тогда x 2 + 1/x 2 = t 2 – 2, и после преобразований получим квадратное уравнение вида 2(t 2 – 2) + 3t – 16 =0. Решая уравнение по общему виду 2t 2 -4 + 3t -16 = 0, 2t 2 + 3t – 20 = 0, получим корни t1 = , t2 = -4. Можно не решать, а сразу же записать ответы предыдущего уравнения.
Ответ: х1 = , х2 = -2+, х3 = -2 – , х4 = 2.
Учитель: Мы рассмотрели симметрические уравнения, являющиеся частным случаем возвратных уравнений. Следовательно, и ход их решения будет похожим, но более подробно мы познакомимся с возвратными уравнениями и рассмотрим более подробно ход решения на следующем занятии. А сейчас,
я вам предложу домашнее задание на два варианта для самостоятельного решения. Дополнительно даны ответы ко всем уравнениям. Не сможете справиться, рассмотрим на уроке. а кто-то хочет больше решить, с довольствием приветствую вас.
Вариант 1. Вариант 2. а) (х 2 – 6х) 2 -2(х – 3) 2 = 81;
б) х 3 + х + 2 = 0;
в) 6х 4 – 35 х 3 + 62 х 2 – 35х + 6 = 0;
г) (х –1)(х+2)(х-3)(х+4) = 144;
д) (х 2 + х + 1)(х 2 + х + 2) = 12;а) (х 2 – 8х) 2 + 3(х – 4) 2 = 76;
б) х 3 + 3х 2 + 2х = 0.
в) 5х 4 – 12х 3 + 14х 2 – 12х + 5 = 0.
г) (х-1)(х-2)(х-3)(х-4) = 15.
д) (3х +2) 4 – 13(3х + 2) 2 + 36 = 0.
Выберите ответы, выполняя домашнее задание.
А | В. 1. | С . | Д . | Б. |
Учитель: Подведем итог нашей темы. Уравнения третьей и четвертой степени решались в общем случае методом замены переменной, в который заключается в том, что для решения уравнения вида f(x) =0 вводят переменную t = g(x) и выражают f(x)через t, получая новое уравнение w(t) = 0. Решая затем уравнение w(t)= 0, находят его корни <t1, t2, … tn>. После чего получают совокупность n – уравнений g(x) = t1, g(x) = t2, … g(x) = tn, из которых находят корни исходного уравнения.
🔥 Видео
ЛУЧШАЯ СТРАТЕГИЯ решения Целых Рациональных Уравнений (математика с нуля)Скачать
ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Сложные рациональные уравнения | МатематикаСкачать
Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать
Рациональные уравнения / Тип 12 ЕГЭ профиль #519423Скачать
Как решать уравнения с дробью? #shortsСкачать
Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
Решение сложных рациональных уравненийСкачать
Дробно-рациональные уравнения + Бонус: треугольник Паскаля | МатематикаСкачать
Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать
8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать
Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Дробно рациональные уравнения. Алгебра, 9 классСкачать
Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать
Зачётный способ решить дробно рациональное уравнение методом заменыСкачать
Как решать неравенства? Математика 10 класс | TutorOnlineСкачать