Сложное уравнение 6 класс с подробным ответом

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(Сложное уравнение 6 класс с подробным ответом; 9(Сложное уравнение 6 класс с подробным ответом; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —Сложное уравнение 6 класс с подробным ответомa; Сложное уравнение 6 класс с подробным ответомm-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (aСложное уравнение 6 класс с подробным ответом0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

Сложное уравнение 6 класс с подробным ответомх+3=Сложное уравнение 6 класс с подробным ответомх+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(Сложное уравнение 6 класс с подробным ответомх+3)∙9=(Сложное уравнение 6 класс с подробным ответомх+5)∙9 Далее − по плану.

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.

Сложное уравнение 6 класс с подробным ответом

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

Сложное уравнение 6 класс с подробным ответом

  • Обыкновенные.
  • С параметром.
  • Высшей степени.

    Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

    Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

    Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

    Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

    Обыкновенные тождества

    Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

  • Раскрыть скобки.
  • Произвести математические преобразования над компонентами уравнения.
  • Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  • Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  • Выполнить проверку, подставив решение в исходное равенство.

    Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  • 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  • 7t 2 −7t 2 +7t-7=7t-7=8.
  • 7t=15.
  • t=2,5.
  • 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

    Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

    Выражения с параметром

    Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

  • Записать равенство.
  • Раскрыть скобки и привести подобные элементы к общему виду.
  • Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  • Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  • Записать формулу определения корня.
  • При необходимости подставить значение параметра.
  • Проверить результат.

    Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  • t-2+pt=0.
  • Опускается, поскольку в выражении нет скобок.
  • (t+pt)=t (1+p)=2.
  • p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  • t=2/(1+p).
  • При p=0: t=2.
  • 2−2+0*2=0.

    Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)

    . Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

    Понижение степени

    Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

    Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

    Сложное уравнение 6 класс с подробным ответом

    Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  • Написать равенство с неизвестным.
  • Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  • Решить линейные уравнения.
  • Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

    Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  • 3t^2-3=0.
  • 3(t^2-1)=0.
  • Сократить обе части на 3: t^2-1=0.
  • Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  • У уравнения два корня: t1=1 и t2=-1.
  • Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

    Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

    Системы линейного типа

    Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

  • Записать систему уравнений.
  • Выбрать наиболее простое тождество и выразить одну величину через другую.
  • Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  • Раскрыть скобки и выполнить математические преобразования.
  • Решить уравнение в четвертом пункте.
  • Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  • Найти вторую переменную.
  • Записать результат.
  • Выполнить проверку.

    Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  • 5t-2s=1 и 4t^2-s^2=0.
  • Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  • (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  • 8t=8=>t=1.
  • 5*1-2s=1. Отсюда s=2.
  • 5*1-2*2=1=1 (равенство действительное).

    В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

    Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

    Сложное уравнение 6 класс с подробным ответом

  • Упростить все выражения, входящие в систему.
  • Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  • Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  • Начертить прямоугольную систему координат.
  • Отметить точки, исходя из таблицы, в системе координат.
  • Соединить точки плавными линиями при помощи карандаша.
  • Проделать аналогичные действия над другими тождествами (5 и 6).
  • Определить точки пересечения функций и записать их координаты.

    В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

    Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

    Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

    Сложные уравнения. Как решить сложное уравнение?

    Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

    Сложное уравнение 6 класс с подробным ответом

    Видео:Решение уравнений. Видеоурок 28. Математика 6 классСкачать

    Решение уравнений. Видеоурок 28. Математика 6 класс

    Общие сведения

    Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

    Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

    В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

    Видео:Решение уравнений - математика 6 классСкачать

    Решение уравнений - математика 6 класс

    Классификация уравнений

    Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

    Сложное уравнение 6 класс с подробным ответом

    1. Обыкновенные.
    2. С параметром.
    3. Высшей степени.

    Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

    Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

    Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

    Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

    Обыкновенные тождества

    Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

    1. Раскрыть скобки.
    2. Произвести математические преобразования над компонентами уравнения.
    3. Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
    4. Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
    5. Выполнить проверку, подставив решение в исходное равенство.

    Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

    1. 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
    2. 7t 2 −7t 2 +7t-7=7t-7=8.
    3. 7t=15.
    4. t=2,5.
    5. 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

    Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

    Выражения с параметром

    Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

    1. Записать равенство.
    2. Раскрыть скобки и привести подобные элементы к общему виду.
    3. Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
    4. Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
    5. Записать формулу определения корня.
    6. При необходимости подставить значение параметра.
    7. Проверить результат.

    Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

    1. t-2+pt=0.
    2. Опускается, поскольку в выражении нет скобок.
    3. (t+pt)=t (1+p)=2.
    4. p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
    5. t=2/(1+p).
    6. При p=0: t=2.
    7. 2−2+0*2=0.

    Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)

    . Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

    Понижение степени

    Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

    Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

    Сложное уравнение 6 класс с подробным ответом

    Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

    1. Написать равенство с неизвестным.
    2. Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
    3. Решить линейные уравнения.
    4. Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

    Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

    1. 3t^2-3=0.
    2. 3(t^2-1)=0.
    3. Сократить обе части на 3: t^2-1=0.
    4. Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
    5. У уравнения два корня: t1=1 и t2=-1.
    6. Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

    Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

    Системы линейного типа

    Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

    Сложное уравнение 6 класс с подробным ответом

    1. Записать систему уравнений.
    2. Выбрать наиболее простое тождество и выразить одну величину через другую.
    3. Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
    4. Раскрыть скобки и выполнить математические преобразования.
    5. Решить уравнение в четвертом пункте.
    6. Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
    7. Найти вторую переменную.
    8. Записать результат.
    9. Выполнить проверку.

    Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

    1. 5t-2s=1 и 4t^2-s^2=0.
    2. Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
    3. (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
    4. 8t=8=>t=1.
    5. 5*1-2s=1. Отсюда s=2.
    6. 5*1-2*2=1=1 (равенство действительное).

    В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

    Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

    Сложное уравнение 6 класс с подробным ответом

    1. Упростить все выражения, входящие в систему.
    2. Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
    3. Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
    4. Начертить прямоугольную систему координат.
    5. Отметить точки, исходя из таблицы, в системе координат.
    6. Соединить точки плавными линиями при помощи карандаша.
    7. Проделать аналогичные действия над другими тождествами (5 и 6).
    8. Определить точки пересечения функций и записать их координаты.

    В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

    Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

    💡 Видео

    Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

    Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

    Решение уравнений с дробными числами в 6 классеСкачать

    Решение уравнений с дробными числами в 6 классе

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.

    Решить уравнение - Математика - 6 классСкачать

    Решить уравнение - Математика - 6 класс

    6 класс, 42 урок, Решение уравненийСкачать

    6 класс, 42 урок, Решение уравнений

    Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 класс

    дробное уравнение как решать для 6 классаСкачать

    дробное уравнение как решать для 6 класса

    Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

    Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

    Как решить сложные уравненияСкачать

    Как решить сложные уравнения

    6 класс. Решение уравнений с модулями.Скачать

    6 класс. Решение уравнений с модулями.

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

    Раскрытие скобок. 6 класс.Скачать

    Раскрытие скобок. 6 класс.
  • Поделиться или сохранить к себе: