Е.П. Нелин, В.А. Лазарев
АЛГЕБРА
и начала математического
анализа
10 класс
учреждений. Базовый и
- § 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
- Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
- Упражнения
- Решение систем тригонометрических уравнений
- п.1. Системы, в которых одно из уравнений является линейным
- п.2. Системы с независимыми уравнениями
- п.3. Системы с произведениями тригонометрических функций
- п.4. Замена переменных в системах тригонометрических уравнений
- п.5. Примеры
- Способы решения тригонометрических уравнений
- 📸 Видео
Видео:Решение тригонометрических уравнений и их систем. 10 класс.Скачать
§ 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Работу выполнила: Мусина В.А. студентка группы 45.3
Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
Задача 1 . Решите систему уравнений
Из первого уравнения находим и подставляем во второе.
Получаем
Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.
Действительно, в таком случае имеем
Тогда, например, при n = 0 получаем
Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:
Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.
Поэтому следует запомнить:
Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».
Задача 2 . Решите систему уравнений
Почленно сложим и вычтем эти уравнения. Получим равносильну систему
Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:
Почленно складывая и вычитая уравнения этих систем, находим x и y:
Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.
Вопросы для контроля
- Какие методы используются для решения систем тригонометрических уравнений?
- Объясните, в каком случае при формальном решении системы уравнений мы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.
Упражнения
Решите систему уравнений (1–8).
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Решение систем тригонометрических уравнений
Системы тригонометрических уравнений бесконечно разнообразны. При их решении используются как общие методы: подстановки, сложения, замены переменной, так и частные, связанные с особенностями преобразований тригонометрических функций.
В этом параграфе мы рассмотрим только некоторые, наиболее характерные, подходы к решению таких систем.
п.1. Системы, в которых одно из уравнений является линейным
Если одно из уравнений системы является линейным, то система решается методом подстановки.
Например:
Решим систему ( begin x+y=fracpi4\ tgx+tgy=1 end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=fracpi4-x\ tgx+tgleft(fracpi4-xright)=1 end end Решаем полученное уравнение относительно (x): begin tgx+frac=1Rightarrow frac=1-tgx end ОДЗ: (tgxne -1) begin 1-tgx=(1-tgx)(1+tgx)Rightarrow(1-tgx)(1-1-tgx)=0\ -tgx(1-tgx)=0\ begin left[ begin tgx=0\ tgx=1 end right. \ tgxne -1 end Rightarrow left[ begin tgx=0\ tgx=1 end right. Rightarrow left[ begin x_1=pi k\ x_2=fracpi4+pi k end right. end Получаем две пары решений: begin left[ begin begin x_1=pi k\ y_1=fracpi4-x=fracpi4-pi k end \ begin x_2=fracpi4+pi k\ y_2=fracpi4-left(fracpi4+pi kright)=-pi k end end right. end Ответ: (left)
п.2. Системы с независимыми уравнениями
Если уравнения системы являются независимыми, то они решаются по отдельности. При этом счетчики периодов обязательно должны быть различными (например, (k) и (n), для двух независимых уравнений).
Например:
Решим систему ( begin sin(x-y)=0\ cox(x+y)=1 end )
Уравнения независимы, решаем каждое из них, а затем методом сложения находим (x) и (y): begin begin x-y=pi k\ x+y=2pi n end Rightarrow begin 2x=pi k+2pi n\ 2y=2pi n-pi k end Rightarrow begin x=frac+pi n=fracpi2(k+2n)=fracpi2(2n+k)\ y=pi n-frac=fracpi2(2n-k) end end Ответ: (left(fracpi2(2n+k); fracpi2(2n-k)right))
п.3. Системы с произведениями тригонометрических функций
Системы с произведениями тригонометрических функций и приводимые к ним решаются методом сложения.
Например:
Решим систему ( begin sinx siny=frac<sqrt>\ cosx cosy=frac<sqrt> end )
Добавим и вычтем уравнения и используем формулы косинуса суммы и разности: begin begin cosxcosy+sinxsiny=frac<sqrt>\ cosxcosy-sinxsiny=0 end Rightarrow begin cos(x-y)=frac<sqrt>\ cos(x+y)=0 end end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти (x) и (y): begin begin x-y=pmfracpi6+2pi k\ x+y=fracpi2+pi n end Rightarrow begin 2x=pmfracpi6+fracpi2+pi(2k+n)\ 2y=fracpi2pmfracpi6+pi(n-2k) end Rightarrow begin x=pmfrac+fracpi4+fracpi2(2k+n)\ y=fracpi4pmfrac+fracpi2(n-2k) end end Получаем две пары решений: begin left[ begin begin x_1=fracpi6+fracpi2(2k+n)\ y_1=fracpi3+fracpi2(n-2k) end \ begin x_2=fracpi3+fracpi2(2k+n)\ y_2=fracpi6+fracpi2(n-2k) end end right. end Ответ: (left)
п.4. Замена переменных в системах тригонометрических уравнений
Системы двух уравнений с двумя тригонометрическими функциями легко решаются с помощью замены переменных.
Например:
Решим систему ( begin tgx-siny=4\ tg^2x+sin^2y=26 end )
Замена переменных: (a=tgx, b=siny) begin begin a-b=4\ a^2+b^2=26 end Rightarrow begin a=b+4\ (b+4)^2+b^2=26 end Rightarrow begin a=b+4\ 2b^2+8b-10=0 end Rightarrow\ Rightarrow begin a=b+4\ b^2+4b-5=0 end Rightarrow begin a=b+4\ (b+5)(b-1)=0 end Rightarrow left[ begin begin a=-1\ b=-5 end \ begin a=5\ b=1 end end right. end Переменная (b=siny) ограничена: (-1leq bleq 1).
(b=-5lt-1) не подходит. Остается вторая пара решений: (begin a=5\ b=1 end )
Возвращаемся к исходным переменным: begin begin tgx=5\ siny=1 end Rightarrow begin x=arctg5+pi k\ y=fracpi2+2pi n end end Ответ: (left(arctg5+pi k; fracpi2+2pi nright))
п.5. Примеры
Пример 1. Решите систему уравнений: a) ( begin x+y=pi\ sinx+siny=sqrt end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=pi-x\ sinx+sin(pi-x)=sqrt end end Решаем полученное уравнение относительно (x): begin sinx+sinx=sqrtRightarrow 2sinx=sqrtRightarrow sinx=frac<sqrt>Rightarrow\ Rightarrow x=(-1)^kfracpi3+pi k= left[ begin fracpi3+2pi k\ frac+2pi k end right. end Получаем две пары решений: begin left[ begin begin x=fracpi3+2pi k\ y=pi-x=pi-fracpi3-2pi k=frac-2pi k end \ begin x=frac+2pi k\ y=pi-x=pi-frac-2pi k=fracpi3-2pi k end end right. end Ответ: (left<left(fracpi3+2pi k; frac-2pi kright), left(frac+2pi k; fracpi3-2pi kright)right>)
б) ( begin sinxcosy=frac34\ cosxsiny=frac14 end )
Добавим и вычтем уравнения и используем формулы синуса суммы и разности: begin begin sinxcosy+cosxsiny=1\ sinxcosy-cosxsinyfrac12 end Rightarrow begin sin(x+y)=1\ sin(x-y)=frac12 end end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти (x) и (y): begin begin x+y=fracpi2+2pi k\ x-y=(-1)^nfracpi6=pi n end Rightarrow begin 2x=fracpi2+(-1)^nfracpi6+pi(2k+n)\ 2y=fracpi2-(-1)^nfracpi6+pi(2k-n) end Rightarrow\ Rightarrow begin x=fracpi4+(-1)^nfrac+fracpi2(2k+n)\ y=fracpi4-(-1)^nfrac+fracpi2(2k-n) end end Ответ: (left(fracpi4+(-1)^nfrac+fracpi2(2k+n); fracpi4-(-1)^nfrac+fracpi2(2k-n)right))
в) ( begin cosfraccosfrac=frac12\ cosxcosy=frac14 end )
Используем формулу произведения косинусов: $$ cosxcosy=frac12(cos(x+y)+cos(x-y)) $$ Получаем: begin cosfraccosfrac=frac12left(cosleft(frac+fracright)+cosleft(frac-fracright)right)=\ =frac12(cosx+cosy)\ begin frac12(cosx+cosy)=frac12\ cosxcosy=frac14 end Rightarrow begin cosx+cosy=1\ cosxcosy=frac14 end end Замена переменных: (a=cosx, b=cosy) begin begin a+b=1\ ab=frac14 end Rightarrow begin a=1-b\ (1-b)b=frac14 end Rightarrow begin a=1-b\ b^2-b+frac14=0 end Rightarrow begin a=1-b\ left(b-frac12right)^2=0 end Rightarrow begin a=frac12\ b=frac12 end end Возвращаемся к исходным переменным: begin begin cosx=frac12\ cosy=frac12 end Rightarrow begin x=pmfracpi3+2pi k\ y=pmfracpi3+2pi n end end Получаем четыре пары решений.
Ответ: ( left< begin left(-fracpi3+2pi k; -fracpi3+2pi nright), left(fracpi3+2pi k; fracpi3+2pi nright),\ left(-fracpi3+2pi k; fracpi3+2pi nright), left(fracpi3+2pi k; -fracpi3+2pi nright) end right> )
г) ( begin x+y=frac23\ 2cos(pi x)+4cos(pi y)=3 end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=frac23-x\ 2cos(pi x)+4cosleft(pileft(frac23-xright)right)=3 end end Решаем полученное уравнение относительно (x): begin 2cos(pi x)+4cosleft(frac-pi xright)=3\ 2cos(pi x)+4left(cosfraccospi x+sinfracsinpi xright)=3\ 2cos(pi x)+left(left(-frac12right)cospi x+frac<sqrt>sinpi xright)=3\ 2cos(pi x)-2cos(pi x)+2sqrtsinpi x=3\ sinpi x=frac<sqrt>Rightarrow pi x= left[ begin fracpi3+2pi k\ frac+2pi k end right. Rightarrow x= left[ begin frac13+2k\ frac23+2k end right. end Получаем две пары решений: begin left[ begin begin x=frac13+2k\ y=frac23-x=frac13-2k end \ begin x=frac23+2k\ y=-2k end end right. end Ответ: (left)
Пример 2*. Решите систему уравнений:
a) ( begin sqrtcosx=0\ 2sin^2x-cosleft(2y-fracpi3right)=0 end )
Первое уравнение является независимым. Решаем его, чтобы найти (x): begin begin left[ begin cos2x=0\ cosx=0 end right.\ cos2xgeq 0 end Rightarrow begin left[ begin 2x=fracpi2+pi k\ x=fracpi2+pi k end right.\ -fracpi2+2pi kleq 2xleqfracpi2+2pi k end Rightarrow begin left[ begin x=fracpi4+frac\ x=fracpi2+pi k end right.\ -fracpi4+pi kleq xleqfracpi4+pi k end end
Семейство решений (x=fracpi2+pi k) не подходит по требованию ОДЗ (закрашенные сектора). Остается только: begin x=fracpi4+frac end |
Подставляем полученный (x) во второе уравнение: begin 2sin^2left(fracpi4+fracright)-cosleft(2y-fracpi3right)=0 end Используем формулу понижения степени: (2sin^2x=1-cos2x) begin 2sin^2left(fracpi4+fracright)=1-cosleft(2left(fracpi4+fracright)right)=1-underbrace_=1 end Получаем: begin 1-cosleft(2y-fracpi3right)=0Rightarrow cosleft(2y-fracpi3right)=1Rightarrow 2y-fracpi3=2pi nRightarrow\ Rightarrow 2y=fracpi3+2pi nRightarrow y=fracpi6+pi n end Ответ: (left(fracpi4+frac; fracpi6+pi nright))
б) ( begin tgleft(fracpi4+xright)=2sqrtcos^3y\ tgleft(fracpi4-xright)=2sqrtsin^3y end )
Рассмотрим произведение: $$ tgleft(fracpi4+xright)cdot tgleft(fracpi4-xright)=fraccdot frac=1 $$ Умножим уравнения и получим: begin 1=8cos^3ysin^3y=(2cosysiny)^3=sin^32yRightarrow sin2y=1Rightarrow 2y=fracpi2+2pi k\ y=fracpi4+pi k end Поставляем полученный y в первое уравнение: $$ tgleft(fracpi4+xright)=2sqrtcos^3left(fracpi4+pi kright) $$ Косинус равен ±1, в зависимости от четверти, в которой находится угол (y): begin cosleft(fracpi4+pi kright)= left[ begin frac<sqrt>, y=frac+2pi k\ -frac<sqrt>, y=frac+2pi k end right. end В первом случае: $$ tgleft(fracpi4+xright)=2sqrtcdotleft(frac<sqrt>right)^3=1Rightarrowfracpi4+x=fracpi4+pi nRightarrow x=pi n $$ Во втором случае: $$ tgleft(fracpi4+xright)=2sqrtcdotleft(-frac<sqrt>right)^3=-1Rightarrowfracpi4+x=-fracpi4+pi nRightarrow x=-fracpi2+pi n $$ Получаем две пары решений: begin left[ begin begin x=pi n\ y=fracpi4+2pi k end \ begin x=-fracpi2+pi n\ y=frac+2pi k end end right. end Ответ: (left<left(pi n; fracpi4+2pi kright), left(-fracpi2+pi n; frac+2pi kright)right>)
в) begin begin sqrt=cosx\ 2sinxctgy+1=0 end end ОДЗ: ( begin 1+sinxsinygeq 0\ cosxgeq 0\ cosyne 0 end Rightarrow begin cosxgeq 0\ cosyne 0 end )
(1+sinxsinygeq 0) — это требование всегда выполняется.
Возведем первое уравнение в квадрат: begin 1+sinxsiny=cos^2xRightarrow 1-cos^2x+sinxsiny=0Rightarrow\ Rightarrow sin^2x+sinxsiny=0Rightarrow sinx(sinx+siny)=0Rightarrow left[ begin sinx=0\ sinx+siny=0 end right. end Из второго уравнения следует, что (sinx=0) никогда не является решением ((0+1ne 0)). Значит, остается (sinx+siny=0) begin begin sinx+siny=0\ 2sinxctgy+1=0 end Rightarrow begin siny=-sinx\ ctgy=-frac end Rightarrow cosy=sinycdot ctgy=frac12Rightarrow\ Rightarrow y=pm arccosfrac12+2pi k=pmfracpi3+2pi k\ sinx=-sinyRightarrow left[ begin x=y+pi=pipmfracpi3+2pi n= left[ begin frac+2pi n\ frac+2pi n end right. \ x=-y=pmfracpi3+2pi n end right. end По ОДЗ (cosxgeq 0), подходят только нижние корни.
Получаем две пары решений.
Ответ: (left)
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Способы решения тригонометрических уравнений
Министерство образования и молодёжной политики Чувашской Республики
Муниципальное образовательное учреждение
«Средняя общеобразовательная школа №6 г. Чебоксары»
Способы решения тригонометрических уравнений
МОУ «Средняя общеобразовательная школа №6
Методическая разработка по теме «Способы решения тригонометрических уравнений». В средней школе на изучение данной темы отводится незначительное количество часов. Эта разработка изучит, расширит и углубит математические знания по данной теме.
На экзаменах по математике для поступающих в ВУЗы, олимпиадах часто встречаются задания на решение тригонометрических уравнений.
Все приводимые способы направлены на развитие познавательного интереса к предмету, знакомящие учащихся с новыми идеями и методами, расширяющие представления об изучаемой теме в основной школе.
Уравнения, предлагаемые в данной разработке, интересны, красивы, носят прикладной характер, что позволяет повысить учебную мотивацию учащихся и интерес к предмету и вызвать желание узнать больше.
Основные цели методической разработки:
· знакомство учащихся с основными приемами и методами решения тригонометрических уравнений;
· развитие навыков применения теоретических сведений по данной теме на практике в различных проявлениях;
· развитие творческих способностей;
· повышение интереса к предмету;
· повторение и обобщение знаний по теме «Способы решения тригонометрических уравнений;
· оказание помощи учащимся систематизировании уравнений и нахождении рациональных приемов решения.
Особенность методической разработки.
Использование материала в работе даст положительные результаты при подготовке школьников к сдаче ЕГЭ по математике.
1. Уравнения, приводимые к алгебраическим. . . . . . . . . . . . .. . . . . . . . . . . . . . . .4
2. Уравнения, решаемые разложением на множители. . . . . . . . . . . . . . . . . . . . . .5
3. Однородные уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4. Уравнения, решаемые с помощью формул сложения тригонометрических функций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
6. Уравнения, решаемые с помощью формул понижения степени. . . . . . . . . . . .8
7. Уравнения вида .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
8. Уравнения смешанного типа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9. Задания для промежуточного и итогового контроля результатов обучения. .13
10. Тригонометрическое уравнение на ЕГЭ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1. Уравнение .
Если для любого t. Если , то формула корней уравнения такова:
2. Уравнение .
При уравнение не имеет решений, так как для любого . Если |a|≤1,то формула для записи всех решений уравнения такова: Удобно записывать не двумя, а одной формулой:
3. Уравнение . Решение данного уравнения имеет вид:.
4. Уравнение . Решение данного уравнения имеет вид:
Способы решения тригонометрических уравнений.
I. Уравнения, приводимые к алгебраическим
Пример. Решить уравнение
Решение. Воспользуемся тем, что . Тогда заданное уравнение можно переписать в виде . После понятных преобразований получим . Введем новую переменную . Тогда уравнение примет вид , откуда находим . Значит,. Из этих уравнений находим, соответственно,
Уравнения для самостоятельного решения:
II. Уравнения, решаемые разложением на множители
Смысл этого метода: если уравнение удается преобразовать к виду , то задача сводится к решению двух уравнений, то есть к решению совокупности уравнений: .
Пример. Решить уравнение .
Решение. Имеем . Значит, приходим к совокупности уравнений . Из первого уравнения находим . Из второго уравнения находим .
Уравнения для самостоятельного решения:
III. Однородные уравнения.
Определение. Уравнение вида, где называют однородным тригонометрическим уравнением первой степени, уравнение вида ¸называют однородным тригонометрическим уравнением второй степени.
Итак, дано уравнение . Разделив обе части уравнения почленно на , получим .
Но, внимание! Делить обе части уравнения на одно и то же выражение можно только в том случае, когда мы уверены, что это выражение нигде не обращается в нуль (на 0 делить нельзя). Уверены ли мы, что в рассматриваемом случае отличен от 0? Давайте проанализируем. Предположим, что cos x =0. Тогда однородное уравнение asinx+bcosx=0 примет вид asinx=0¸ то есть sinx=0¸ так как a≠0. Получается, что и cosx=0¸ и sinx=0¸ а это невозможно, так как sinx и cosx обращается в нуль в различных точках. Итак, в однородном тригонометрическом уравнении первой степени деление обеих частей уравнения на cosx— вполне благополучная операция.
Пример 1. Решить уравнение 2sinx-3cosx= 0.
Решение. Разделим обе части уравнения почленно на cosx¸ получим . Рассмотрим теперь однородное тригонометрическое уравнение второй степени . Если коэффициент a отличен от нуля, то есть в уравнении содержится член sin2x с каким-то коэффициентом, отличным от нуля, то, рассуждая как и выше, нетрудно убедиться в том, что при интересующих нас значениях переменной cos x не обращается в нуль, а потому можно обе части уравнения разделить почленно на .
Это — квадратное уравнение относительно новой переменной z= tgx .
Пример 2. Решить уравнение .
Решение. Разделим обе части уравнения почленно на cos2 x, получим Введя новую переменную получим, . Откуда находим z=1, z=2. Значит, либо tgx=1, либо tgx=2. Из первого уравнения находим Из второго уравнения находим .
Уравнения для самостоятельного решения:
IV. Уравнения, решаемые с помощью формул сложения тригонометрических функций.
позволяют сумму или разность синусов или косинусов разложить на множители.
Пример. Решить уравнения: sin5x + sinx=0;
Решение. Преобразовав сумму синусов в произведение, получим
Значит, либо , откуда находим , либо cos2x=0, откуда находим
Уравнения для самостоятельного решения:
V. Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму
при решении тригонометрических уравнений.
Уравнения для самостоятельного решения:
VI. Уравнения, решаемые с помощью формул понижения степени
Пример. Решить уравнение
Уравнения для самостоятельного решения:
VII. Уравнения вида
Преобразование выражения Итак, Аналогично можно выражение преобразовать к виду .
Пример.
Здесь Имеем Введём вспомогательный аргумент , удовлетворяющий соотношениям например, . Тогда
Уравнения для самостоятельного решения:
VIII. Уравнения смешанного типа
1. Решите уравнения:
Выбор корней проведём на тригонометрической окружности
y
Ответ:
а)
Ответ:
в)
Ответ:
б)
Ответ:
г)
Ответ:
2. Решите уравнения.
y
Не удовлетворяет условию
Выберем те значения x, которые удовлетворяют условию
Ответ:
а)
Ответ:
в)
Ответ:
б)
Ответ:
г)
Ответ:
3. Решите уравнение.
Данное уравнение равносильно системе:
Решим второе уравнение системы:
не удовлетворяет условию
Выберем те значения х, которые удовлетворяют условию .
Ответ:
4. Решите уравнения.
Число корней на .
Выбор корней проведём на тригонометрической окружности.
Число решений на равно 5.
а)
Найти число решений на .
б) .
Найти число решений на
в)
Найти число решений на .
г) .
Найти число решений на .
5. Основной идеей решения следующих заданий является выражение синуса или косинуса через тангенс или котангенс половинного аргумента (или наоборот). При этом следует иметь в виду, что в формулах область определения «левых частей» равенств – все действительные числа, а область определения «правых частей» — .
Поэтому переход от одного уравнения к другому с использованием этих формул, вообще говоря, сужает ОДЗ на множество π.
Аналогичная ситуация с формулами
Вообще, использование формул, у которых ОДЗ «левых» и «правых» частей не совпадают, может привести либо к потере, либо к появлению посторонних корней.
Примерами таких формул являются:
Ответ:
а) . Ответ: .
в) .
Ответ: .
б) . Ответ: .
г) .
Ответ: .
IX. Задания для промежуточного контроля результатов обучения (ответы даны в скобках).
Уравнения, приводимые к алгебраическим.
Уравнения, решаемые способом разложения на множители.
Уравнения, решаемые с помощью формул сложения тригонометрических функций.
Уравнения, решаемые с помощью формул сложения углов и разложения произведения тригонометрических функций в сумму.
Уравнения, решаемые с помощью формул понижения степени.
Уравнения вида .
Уравнения смешанного типа.
1.
2.Найти наименьший корень уравнения на интервале
3.
Тест. Решение тригонометрических уравнений.
1. Найдите корни уравнения на интервале .
а) ; б) ; в) .
2. Найдите наибольший отрицательный корень уравнения
а) ; б) ; в) .
3. Решите уравнение: и найдите сумму корней, принадлежащих интервалу
а) ; б) ; в) .
4. Решите уравнение: и найдите сумму корней, принадлежащих интервалу .
а) ; б) ; в) .
Задания для итогового контроля результатов обучения.
1. Решите уравнения:
а) ; б) ;
в) ; г) ;
д) ; е) .
2. Найдите сумму корней управления
на промежутке .
3. Укажите количество корней уравнения
4. Решите уравнения:
а) ;
б) .
1. а) ; б) ; в) ; г) ;
д) ; е) . 2. 16. 3. 3. 4. а) ;
б) .
X. Тригонометрическое уравнение на ЕГЭ.
Решите уравнение . (С2,2007г.)
ОДЗ уравнения:
Используя способ разложения на множители, получим
или .
не удовлетворяет условию ОДЗ уравнения.
.
Используя способ решения однородного уравнения первой степени, получим:
С учетом ОДЗ уравнения решение данного уравнения имеет вид:
1. , , . Углубленное изучение курса алгебры и математического анализа для 10-11 класса, Москва, Просвещение, 1997 г.
2. , . Факультативный курс по математике: Решение задач: Учебное пособие для 11 кл. средней школы – М., Просвещение, 1999.
3. Журнал «Математика в школе», 2006, № 10.
4. , , . Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Математика. – М. Интеллект-Центр, 2002-2007 г.
5. . Математика. Гтовимся к ЕГ, 2005.
6. . Алгебра и начала анализа; Учебник для 10-11 кл. средней школы – 2-е изд. – М. Просвещение, 2000.
7. , , . Алгебра и начала анализа: Учебник для 10-11 кл. средней школы – 4-е изд. – М. Просвещение, 2002.
8. и др. Алгебра и начала анализа.10-11 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. Ч2: Задач. Для общеобразоват. учреждений.- 5-е изд.-М.:Мнемозина,2004.
📸 Видео
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Решение тригонометрических уравнений и их систем. Практическая часть. 10 класс.Скачать
Решение систем уравнений методом сложенияСкачать
ФОРМУЛЫ СЛОЖЕНИЯ 10 класс тригонометрияСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
✓ Тригонометрические формулы | Борис ТрушинСкачать
Тригонометрия для Чайников, 10 класс, Уравнения, Урок 7Скачать
Системы тригонометрических уравнений. Способы решений СТУ.Скачать
Решение тригонометрических уравнений и их систем. Практическая часть. 10 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Формулы приведения - как их легко выучить!Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать
18+ Математика без Ху!ни. Формулы ПриведенияСкачать
Алгебра 10 класс (Урок№49 - Системы тригонометрических уравнений.)Скачать
Как решают уравнения в России и СШАСкачать