Слау из 4 уравнений решили методом обратной матрицы число неизвестных слау могло быть

Видео:Решение системы уравнений методом обратной матрицы.Скачать

Решение системы уравнений методом обратной матрицы.

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Видео:Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Видео:Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

Решение СЛАУ методом обратной матрицы

Напомним, что решением системы линейных уравнений называется всякая совокупность чисел <x1, x2, . xn> , подстановка которых в эту систему вместо соответствующих неизвестных обращает каждое уравнение системы в тождество.
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных):

2x1-3x2+x3 = 4
-x1+2x2+5x3 = 10
3x1-x2+3x3 = -1
или2x-3y+z = 4
-z+2y+5z = 10
3x-y+3z = -1

См. также Решение матричных уравнений.</x

Видео:Линейная алгебра, 7 урок, СЛАУ. Матричный методСкачать

Линейная алгебра, 7 урок, СЛАУ. Матричный метод

Алгоритм решения

  1. Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
  2. При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
  3. Вектор решения X =<x1, x2, . xn> получается умножением обратной матрицы на вектор результата B .

Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:

231
-210
12-2

Вектор B:
B T = (3,-2,-1)
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆ = 2•(1•(-2)-2•0)-(-2•(3•(-2)-2•1))+1•(3•0-1•1) = -21
Итак, определитель -21 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Транспонированная матрица

A T =
2-21
312
10-2

Алгебраические дополнения.

A1,1 = (-1) 1+1
12
0-2
1,1 = (1•(-2)-0•2) = -2

A1,2 = (-1) 1+2
32
1-2
1,2 = -(3•(-2)-1•2) = 8

A1,3 = (-1) 1+3
31
10
1,3 = (3•0-1•1) = -1

A2,1 = (-1) 2+1
-21
0-2
2,1 = -(-2•(-2)-0•1) = -4

A2,2 = (-1) 2+2
21
1-2
2,2 = (2•(-2)-1•1) = -5

A2,3 = (-1) 2+3
2-2
10
2,3 = -(2•0-1•(-2)) = -2

A3,1 = (-1) 3+1
-21
12
3,1 = (-2•2-1•1) = -5

A3,2 = (-1) 3+2
21
32
3,2 = -(2•2-3•1) = -1

A3,3 = (-1) 3+3
2-2
31
3,3 = (2•1-3•(-2)) = 8

Обратная матрица:

A -1 = -1/21
-28-1
-4-5-2
-5-18

Вектор результатов X = A -1 • B

X = -1/21
-28-1
-4-5-2
-5-18
·
3
-2
-1

X T = (1,0,1)
x1 = -21 / -21 = 1
x2 = 0 / -21 = 0
x3 = -21 / -21 = 1
Проверка:
2•1+3•0+1•1 = 3
-2•1+1•0+0•1 = -2
1•1+2•0+-2•1 = -1

Запишем матрицу в виде:

Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):

= 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3
Определитель минора
∆ = 2•(-3)-3•0+5•3-4•3 = -3

Вектор результатов X
X = A -1 ∙ B
Слау из 4 уравнений решили методом обратной матрицы число неизвестных слау могло быть

Пример №3 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.
Решение:xls

Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение:xls

Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации. После решения методом Крамера, найдите кнопку «Решение методом обратной матрицы для исходных данных». Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:

-130
3-21
21-1

Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:

A=
a11a12a13
a21a22a23
a31a32a33

Тогда:

A=1/∆
A11A21A31
A12A22A32
A13A23A33

где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1) i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.
Транспонированная матрица

A T =
-132
3-21
01-1

Вычисляем алгебраические дополнения.

A1,1=(-1) 1+1
-21
1-1

1,1=(-2•(-1)-1•1)=1

A1,2=(-1) 1+2
31
0-1

1,2=-(3•(-1)-0•1)=3

A1,3=(-1) 1+3
3-2
01

1,3=(3•1-0•(-2))=3

A2,1=(-1) 2+1
32
1-1

2,1=-(3•(-1)-1•2)=5

A2,2=(-1) 2+2
-12
0-1

2,2=(-1•(-1)-0•2)=1

A2,3=(-1) 2+3
-13
01

2,3=-(-1•1-0•3)=1

A3,1=(-1) 3+1
32
-21

3,1=(3•1-(-2•2))=7

A3,2=(-1) 3+2
-12
31

3,2=-(-1•1-3•2)=7

A3,3=(-1) 3+3
-13
3-2

3,3=(-1•(-2)-3•3)=-7
Обратная матрица

A -1 =1/14
133
511
77-7

Вектор результатов X
X=A -1 • B

X=1/14
133
511
77-7
·
4
-3
-3
X=1/14
-3))
X=1/14
-14
14
28

X T =(-1,1,2)
x1= -14 / 14=-1
x2= 14 / 14=1
x3= 28 / 14=2
Проверка.
-1•-1+3•1+0•2=4
3•-1+-2•1+1•2=-3
2•-1+1•1+-1•2=-3
doc:xls
Ответ: -1,1,2.

Пример №6 . Решить неоднородную систему линейных алгебраических уравнений методом обратной матрицы.

Видео:Обратная матрицаСкачать

Обратная матрица

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

📺 Видео

9. Метод обратной матрицы для решения систем линейных уравнений / матричный методСкачать

9. Метод обратной матрицы для решения систем линейных уравнений / матричный метод

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать

Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМ

СЛАУ Метод обратной матрицыСкачать

СЛАУ  Метод обратной матрицы

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Excel метод обратной матрицыСкачать

Excel метод обратной матрицы

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Линейная алгебра. СЛАУ. Метод обратной матрицыСкачать

Линейная алгебра. СЛАУ. Метод обратной матрицы

Линейная алгебра, 5 урок, Обратная матрицаСкачать

Линейная алгебра, 5 урок, Обратная матрица

Матричный метод решения систем линейных уравнений (метод обратной матрицы)Скачать

Матричный метод решения систем линейных уравнений (метод обратной матрицы)

Как находить обратную матрицу - bezbotvyСкачать

Как находить обратную матрицу - bezbotvy

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

слау обратнаяСкачать

слау обратная
Поделиться или сохранить к себе: