Сколько существует различных решений системы логических уравнений

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Сколько существует различных решений системы логических уравнений

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Сколько существует различных решений системы логических уравнений

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

Видео:КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23Скачать

КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23

Решение систем логических уравнений — Основы логики

В алгебре логики изучаются логические операции, производимые над высказываниями. Такие высказывания могут быть истинными или ложными. Применяя к простым высказываниям логические операции, можно строить составные высказывания.

Основные логические операции

Отрицание (инверсия, логическое НЕ)

Смысл операции: результат меняется на противоположный (вместо истины — ложь, вместо лжи — истина).

Логическое сложение (дизъюнкция, логическое ИЛИ)

Смысл операции: результат — истина, если хотя бы один операнд — истина (операндом называется то значение или та переменная, над которым (которой) осуществляется операция).

Обозначения: V или +.

Логическое умножение (конъюнкция, логическое И)

Смысл операции: результат — истина, если оба операнда — истина.

Обозначения: Λ или &.

Исключающее ИЛИ (сложение по модулю 2, строгая дизъюнкция)

Смысл операции: результат — истина, если операнды различны.

Смысл операции: из лжи может следовать что угодно, а из истины — только истина.

Смысл операции: результат — истина, если операнды одинаковы.

Если в логическом выражении используется несколько логических операций, то их порядок определяется приоритетами логических операций:

Сколько существует различных решений системы логических уравнений

Операцию “импликация” можно выразить через “ИЛИ” и “НЕ”:

Сколько существует различных решений системы логических уравнений

Операцию “эквиваленция” также можно выразить через “ИЛИ” и “НЕ”:

Сколько существует различных решений системы логических уравнений

Поразрядные (побитовые) логические операции

Кроме обычных логических операций, применимых по отношению к логическим переменным, возможны поразрядные (побитовые) логические операции, выполняемые для пар “одноименных” (соответствующих одним и тем же разрядам) битов двух целых чисел. При этом двоичное значение 1 рассматривается как “истина”, а значение 0 — как “ложь”. Результатом выполнения поразрядной логической операции является целое число.

Для каждой пары битов выполняется логическая операция “И”.

Сколько существует различных решений системы логических уравнений

Для каждой пары битов выполняется логическая операция “ИЛИ”.

Сколько существует различных решений системы логических уравнений

Основные законы алгебры логики

Сколько существует различных решений системы логических уравнений

Сколько существует различных решений системы логических уравнений

Сколько существует различных решений системы логических уравнений

Закон непротиворечия (высказывание не может быть одновременно истинным и ложным)

Сколько существует различных решений системы логических уравнений

Закон исключения третьего (либо высказывание, либо его отрицание должно быть истинным)

Сколько существует различных решений системы логических уравнений

Закон двойного отрицания

Сколько существует различных решений системы логических уравнений

Законы де Моргана

Сколько существует различных решений системы логических уравнений

Законы рефлексивности (идемпотенции)

Сколько существует различных решений системы логических уравнений

Свойства логических констант 1 и 0

Сколько существует различных решений системы логических уравнений

Сколько существует различных решений системы логических уравнений

Полезно запомнить следующее правило: если известно количество решений уравнения F(x1, х2, . хn) = 1, то количество возможных решений “противоположного” уравнения F(x1, х2, . хn) = 0 равно разности количества всех возможных комбинаций значений переменных х1, х2. хn (которое равно 2 n ) и количества решений уравнения F(x1, х2, . хn) = 1 (и, соответственно, наоборот):

Сколько существует различных решений системы логических уравнений

Это правило легко доказать, рассмотрев полную таблицу истинности логической функции F(x1, х2, . хn): если исключить из нее строки, соответствующие значению F = 1, то останутся строки, соответствующие значению F = 0,и наоборот.

Разбор типовых задач

Задача 1. Сколько различных решений имеет система уравнений

Сколько существует различных решений системы логических уравнений

В ответе не нужно перечислять все различные наборы значений х1, х2, . х10, при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

1) Анализируется первое уравнение:

Сколько существует различных решений системы логических уравнений

Последняя выполняемая операция здесь — И, поэтому:

Сколько существует различных решений системы логических уравнений

Следует обратить внимание: в обеих частях записаны одни и те же тождества, только в первом случае они записаны “как есть”, а во втором — с отрицаниями. Тогда, если (х1 ≡ х2) = 1 и (х3 ≡ х4) = 1, то первая запись будет истинной, но тогда ¬(x1 ≡ х2) и ¬(х3 ≡ х4) оба будут ложными, и вторая запись ложна. И наоборот, при (х1 ≡ х2) = 0 и (х3 ≡ х4) = 0 первая запись будет ложной, а вторая (с отрицаниями) — истинной. Не подходит ни тот, ни другой вариант. “Спасает положение” то, что тождества в обеих записях соединены операцией ИЛИ, т.е. оба раза достаточно, чтобы единице было равно хотя бы одно из этих тождеств.

Вывод: чтобы первое уравнение системы было равно 1, нужно, чтобы либо (х1 ≡ х2) = 1 и (х3 ≡ х4) = 0, либо, наоборот, (х1 ≡ х2) = 0 и (х3 ≡ х4) = 1.

Первое из этих “либо” даёт такие варианты значений переменных, когда х1 и х2 одинаковы, а х3 и х4 различны:

Второе “либо”, аналогично, даёт варианты, в которых, наоборот, х1 и х2 различны, а х3 и х4 одинаковы:

Всего — 8 вариантов.

2) Добавляется в анализ второе уравнение:

Сколько существует различных решений системы логических уравнений

Рассуждая аналогично и учитывая, что для х3 и х4 возможные варианты “унаследованы” от предыдущего уравнения, получается, что в вариантах значений х5, х6, добавленных этим вторым уравнением, для одинаковых значений х3 и х4 должны быть разными значения х5 и х6, а для различных значений х3 и х4 — одинаковые значения х5 и х6:

Сколько существует различных решений системы логических уравнений

Итого из 8 предыдущих вариантов благодаря второму уравнению получается 16 (вдвое больше).

3) Очевидно, такая тенденция сохранится и дальше, ведь уравнения системы — типовые. Значит, добавление в рассмотрение третьего уравнения, пропущенного в записи системы и использующего переменные х5, х6, х7, x8, снова удвоит количество вариантов значений переменных: из 16 их получится 32.

Аналогично, последнее, четвёртое уравнение системы (переменные х7, х8, х9, х10) снова удваивает количество вариантов, “унаследованное” от предыдущего уравнения. В итоге для всей системы уравнений получается 64 возможных варианта значений переменных x1 — x10.

Ответ: 64 варианта значений переменных.

Задача 2. Сколько существует различных наборов значений логических переменных x1, х2, х3, х4, х5, у1, у2, у3, у4, у5, которые удовлетворяют всем перечисленным ниже условиям?

Сколько существует различных решений системы логических уравнений

В ответе не нужно перечислять все различные наборы значений переменных x1, х2, х3, х4, х5, y1, у2, у3, у4, у5, при которых выполнена данная система равенств. В качестве ответа вам нужно указать количество таких наборов.

Как и всегда при решении задач с системами логических уравнений, нужно сначала проанализировать каждое уравнение в отдельности. При этом, первое и второе уравнения заданной системы практически идентичны (с точностью до имён переменных — “игреки” вместо “иксов”), и это существенно облегчает работу.

Анализируя первое уравнение:

Сколько существует различных решений системы логических уравнений

Таблица истинности логической операции следования: единственная ситуация, при которой её результат равен нулю, — когда из единицы следует нуль, а во всех других случаях эта операция возвращает единицу:

Кроме того, поскольку все отдельные операции следования в первом уравнении соединены операцией И, для выполнения заданного в нём равенства требуется, чтобы все операции следования давали в результате единицу.

Чтобы найти все возможные комбинации значений переменных, задействованных в первом уравнении, удобнее всего выполнить построение дерева решений: это позволит не запутаться и не пропустить какие-то варианты. При построении дерева на каждом его очередном шаге анализируется очередная пара переменных и для каждой имеющейся ветви определяются дальнейшие варианты ветвления. Слева указываются логические операции следования, которые и анализируются на соответствующих шагах (уровнях дерева). Ключевым моментом при построении дерева является уже отмеченный выше факт, что для получения единичного результата из нуля может следовать любое значение второй переменной, а из единицы — только единица.

Сколько существует различных решений системы логических уравнений

Основную идею при построении данного дерева можно условно выразить фразой: “размножаются только нули”. То есть если имеется начало набора значений пяти переменных, которое на данный момент завершается нулём, то продолжить его можно как нулём, так и единицей (в дереве имеется ветвление), но если текущая последовательность заканчивается единицей, то продолжать её можно только единицей, и в дереве не будет никакого ветвления, а только продолжение уже существующей ветви.

Полный набор возможных значений переменных, удовлетворяющих первому уравнению, тогда содержится в самой нижней строке построенного дерева (в его “листьях”): (х1х2х3х4х5) = (00000), (00001), (00011), (00111), (01111), (11111).

Второе уравнение по структуре полностью совпадает с первым. Поэтому анализировать его нет необходимости, и можно сразу записать набор возможных для него значений переменных: (y1y2y3y4y5) = (00000), (00001), (00011), (00111), (01111), (11111).

Если бы в условии задачи присутствовали только рассмотренные два уравнения, то, поскольку в них нет общих переменных, решением этой системы уравнений были бы все возможные попарные сочетания найденных наборов значений “иксов” и “игреков”. Именно третье уравнение, в котором одной логической операцией связаны один из “иксов” и один из “игреков”, является “ключом”, определяющим выбор: какие из найденных комбинаций наборов значений (х1х2х3х4х5) и (y1y2y3y4y5) подходят, а какие — нет.

Запись этого третьего уравнения:

Согласно ему, из всех найденных пар наборов значений “иксов” и “игреков” для решения подходят только такие, в которых значения указанных переменных соответствуют истинности заданной логической операции, т.е.:

• когда в наборе значений (y1y2y3y4y5) пятая цифра равна нулю, в пару с ним годятся любые наборы значений (х1х2х3х4х5), поскольку, что бы в них ни стояло в пятой позиции (0 или 1), результат операции у5→ х5 = 1 в любом случае будет равен 1 (см. таблицу истинности для этой операции);

• когда в наборе значений (y1y2y3y4y5) пятая цифра равна единице, в пару с ним годятся только такие наборы значений (х1х2х3х4х5), в которых пятая цифра равна 1.

Удобнее и нагляднее всего расписать все получаемые комбинации значений х и y виде таблицы (“матрицы решений”). Анализируемые цифры в ней выделены подчеркиванием.

Видео:Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)

Сколько существует различных решений системы логических уравнений

Сло­жим ко­ли­че­ство ва­ри­ан­тов: 1 + 3 + 9 + 27 + 81 + 243 = 364.

За­да­ние 3. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, x8 ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, x8 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

За­пи­шем пе­ре­мен­ные в строч­ку: x1x2x3x4x5x6x7x8. Им­пли­ка­ция ложна толь­ко в том слу­чае, когда из ис­ти­ны сле­ду­ет ложь. Усло­вие не вы­пол­ня­ет­ся, если в ряде после оди­на­ко­вых цифр при­сут­ству­ет дру­гая цифра. На­при­мер, «11101. » что озна­ча­ет не­вы­пол­не­ние вто­ро­го усло­вия.

Рас­смот­рим ком­би­на­ции пе­ре­мен­ных, удо­вле­тво­ря­ю­щие всем усло­ви­ям. Вы­пи­шем ва­ри­ан­ты, при ко­то­рых все цифры че­ре­ду­ют­ся, таких два: 10101010 и 01010101. Те­перь для пер­во­го ва­ри­ан­та, на­чи­ная с конца, будем уве­ли­чи­вать ко­ли­че­ство по­вто­ря­ю­щих­ся под­ряд цифр (на­столь­ко, на­сколь­ко это воз­мож­но). Вы­пи­шем по­лу­чен­ные ком­би­на­ции: «10101011; 10101111. » таких ком­би­на­ций во­семь. Ана­ло­гич­но для вто­ро­го ва­ри­ан­та: «01010101; 01010100. «. Таким об­ра­зом, по­лу­ча­ем 8 + 8 = 16 ре­ше­ний.

За­да­ние 4. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, x6, x7, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

За­пи­шем пе­ре­мен­ные в строч­ку: x1x2x3x4x5x6x7. Им­пли­ка­ция ложна толь­ко в том слу­чае, когда из ис­ти­ны сле­ду­ет ложь. Усло­вие не вы­пол­ня­ет­ся, если в ряду после оди­на­ко­вых цифр при­сут­ству­ет дру­гая цифра. На­при­мер, «11101. » что озна­ча­ет не­вы­пол­не­ние вто­ро­го усло­вия.

Рас­смот­рим ком­би­на­ции пе­ре­мен­ных, удо­вле­тво­ря­ю­щие всем усло­ви­ям. Вы­пи­шем ва­ри­ан­ты, при ко­то­рых все цифры че­ре­ду­ют­ся, таких два: 1010101 и 0101010. Те­перь для пер­во­го ва­ри­ан­та, на­чи­ная с конца, будем уве­ли­чи­вать ко­ли­че­ство по­вто­ря­ю­щих­ся под­ряд цифр(на­столь­ко, на­сколь­ко это воз­мож­но). Вы­пи­шем по­лу­чен­ные ком­би­на­ции: «1010111; 1011111. » таких ком­би­на­ций во­семь. Ана­ло­гич­но для вто­ро­го ва­ри­ан­та: «0101011; 0101111. «. Учтём, что при подсчёте ком­би­на­ция для вто­ро­го ва­ри­ан­та ком­би­на­ции 0000000 и 1111111 были учте­ны два­жды. Таким об­ра­зом, по­лу­ча­ем 8 + 8 − 2 = 14 ре­ше­ний.

За­да­ние 5. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x8 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

По­стро­им древо ре­ше­ний пер­во­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

За­ме­тим, что вы­ра­же­ние (x3 ≡ x4) в двух слу­ча­ях равно 1 и в двух слу­ча­ях равно 0. Таким об­ра­зом, одно урав­не­ние имеет во­семь ре­ше­ний.

Вто­рое урав­не­ние свя­за­но с пер­вым толь­ко через вы­ра­же­ние (x3 ≡ x4). По­стро­им древо ре­ше­ний вто­ро­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x3 ≡ x4) су­ще­ству­ет че­ты­ре на­бо­ра пе­ре­мен­ных x1, x2. x4, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый ри­су­нок). Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 · 4 = 16 ре­ше­ний.

Тре­тье урав­не­ние свя­за­но со вто­рым толь­ко через вы­ра­же­ние (x5 ≡ x6). По­стро­им древо ре­ше­ний тре­тье­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x5 ≡ x6) су­ще­ству­ет 2 · 4 = 8 на­бо­ров пе­ре­мен­ных x1, x2. x6, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый и вто­рой ри­су­нок). Таким об­ра­зом, си­сте­ма из трёх урав­не­ний имеет 8 · 4 = 32 ре­ше­ния.

За­да­ние 6. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x10, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x10 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

По­стро­им древо ре­ше­ний пер­во­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

За­ме­тим, что вы­ра­же­ние (x3 ≡ x4) в двух слу­ча­ях равно 1 и в двух слу­ча­ях равно 0. Таким об­ра­зом, одно урав­не­ние имеет во­семь ре­ше­ний.

Вто­рое урав­не­ние свя­за­но с пер­вым толь­ко через вы­ра­же­ние (x3 ≡ x4). По­стро­им древо ре­ше­ний вто­ро­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x3 ≡ x4) су­ще­ству­ет че­ты­ре на­бо­ра пе­ре­мен­ных x1, x2. x4, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый ри­су­нок). Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 · 4 = 16 ре­ше­ний.

Тре­тье урав­не­ние свя­за­но со вто­рым толь­ко через вы­ра­же­ние (x5 ≡ x6). По­стро­им древо ре­ше­ний тре­тье­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x5 ≡ x6) су­ще­ству­ет 2 · 4 = 8 на­бо­ров пе­ре­мен­ных x1, x2. x6, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый и вто­рой ри­су­нок). Таким об­ра­зом, си­сте­ма из трёх урав­не­ний имеет 8 · 4 = 32 ре­ше­ния, си­сте­ма из четырёх — 64.

За­да­ние 7. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x10, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x10 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

По­стро­им древо ре­ше­ний пер­во­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

За­ме­тим, что вы­ра­же­ние (x3 ≡ x4) в двух слу­ча­ях равно 1 и в двух слу­ча­ях равно 0. Таким об­ра­зом, одно урав­не­ние имеет во­семь ре­ше­ний.

Вто­рое урав­не­ние свя­за­но с пер­вым толь­ко через вы­ра­же­ние (x3 ≡ x4). По­стро­им древо ре­ше­ний вто­ро­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x3 ≡ x4) су­ще­ству­ет че­ты­ре на­бо­ра пе­ре­мен­ных x1, x2. x4, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый ри­су­нок). Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 · 4 = 16 ре­ше­ний.

Тре­тье урав­не­ние свя­за­но со вто­рым толь­ко через вы­ра­же­ние (x5 ≡ x6). По­стро­им древо ре­ше­ний тре­тье­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x5 ≡ x6) су­ще­ству­ет 2 · 4 = 8 на­бо­ров пе­ре­мен­ных x1, x2. x6, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый и вто­рой ри­су­нок). Таким об­ра­зом, си­сте­ма из трёх урав­не­ний имеет 8 · 4 = 32 ре­ше­ния.

Ана­ло­гич­но си­сте­ма из четырёх урав­не­ний будет иметь 64 ре­ше­ния.

За­да­ние 8. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x8 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Рас­смот­рим пер­вое урав­не­ние.

При x1 = 1 воз­мож­ны два слу­чая: x2 = 0 и x2 = 1. В пер­вом слу­чае x3 = 1. Во вто­ром — x3 либо 0, либо 1. При x1 = 0 также воз­мож­ны два слу­чая: x2 = 0 и x2 = 1. В пер­вом слу­чае x3 либо 0, либо 1. Во вто­ром — x3 = 0. Таким об­ра­зом, урав­не­ние имеет 6 ре­ше­ний (см. ри­су­нок).

Сколько существует различных решений системы логических уравнений

Рас­смот­рим си­сте­му из двух урав­не­ний.

Пусть x1 = 1. При x2 = 0 воз­мо­жен лишь один слу­чай: x3 = 1, пе­ре­мен­ная x4 = 0. При x2 = 1 воз­мож­но два слу­чая: x3 = 0 и x3 = 1. В пер­вом слу­чае x4 = 1, во вто­ром — x4 либо 0, либо 1. Всего имеем 4 ва­ри­ан­та.

Пусть x1 = 0. При x2 = 1 воз­мо­жен лишь один слу­чай: x3 = 0, пе­ре­мен­ная x4 = 1. При x2 = 0 воз­мож­но два слу­чая: x3 = 0 и x3 = 1. В пер­вом слу­чае x4 либо 1, либо 0, во вто­ром — x4 = 0. Всего имеем 4 ва­ри­ан­та.

Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 + 4 = 8 ва­ри­ан­тов (см. ри­су­нок).

Сколько существует различных решений системы логических уравнений

Си­сте­ма из трёх урав­не­ний будет иметь 10 ре­ше­ний, из четырёх — 12. От­ри­ца­ние в по­след­нем урав­не­нии дей­ству­ет толь­ко на ком­би­на­цию пе­ре­мен­ных, не свя­зан­ных с с преды­ду­щи­ми урав­не­ни­я­ми. По­это­му, ко­ли­че­ство ре­ше­ний дан­ной в усло­вии си­сте­мы сов­па­да­ет с ко­ли­че­ством ре­ше­ний си­сте­мы из шести од­но­тип­ных урав­не­ний (си­сте­мы, в ко­то­рой в по­след­нем урав­не­нии нет знака от­ри­ца­ния после конъ­юнк­ции), и равно 16.

За­да­ние 9. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x8 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

По­стро­им древо ре­ше­ний пер­во­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

За­ме­тим, что вы­ра­же­ние (x3 ≡ x4) в двух слу­ча­ях равно 1 и в двух слу­ча­ях равно 0. Таким об­ра­зом, одно урав­не­ние имеет во­семь ре­ше­ний.

Вто­рое урав­не­ние свя­за­но с пер­вым толь­ко через вы­ра­же­ние (x3 ≡ x4). По­стро­им древо ре­ше­ний вто­ро­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x3 ≡ x4) су­ще­ству­ет че­ты­ре на­бо­ра пе­ре­мен­ных x1, x2. x4, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый ри­су­нок). Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 · 4 = 16 ре­ше­ний.

Тре­тье урав­не­ние свя­за­но со вто­рым толь­ко через вы­ра­же­ние (x5 ≡ x6). По­стро­им древо ре­ше­ний тре­тье­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x5 ≡ x6) су­ще­ству­ет 2 · 4 = 8 на­бо­ров пе­ре­мен­ных x1, x2. x6, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый и вто­рой ри­су­нок). Таким об­ра­зом, си­сте­ма из трёх урав­не­ний имеет 8 · 4 = 32 ре­ше­ния.

За­да­ние 10. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, . x12, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, … x12 при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

По­стро­им древо ре­ше­ний пер­во­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

За­ме­тим, что вы­ра­же­ние (x3 ≡ x4) в двух слу­ча­ях равно 1 и в двух слу­ча­ях равно 0. Таким об­ра­зом, одно урав­не­ние имеет во­семь ре­ше­ний.

Вто­рое урав­не­ние свя­за­но с пер­вым толь­ко через вы­ра­же­ние (x3 ≡ x4). По­стро­им древо ре­ше­ний вто­ро­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x3 ≡ x4) су­ще­ству­ет че­ты­ре на­бо­ра пе­ре­мен­ных x1, x2. x4, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый ри­су­нок). Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 4 · 4 = 16 ре­ше­ний.

Тре­тье урав­не­ние свя­за­но со вто­рым толь­ко через вы­ра­же­ние (x5 ≡ x6). По­стро­им древо ре­ше­ний тре­тье­го урав­не­ния:

Сколько существует различных решений системы логических уравнений

Для каж­до­го из зна­че­ний 0 и 1 вы­ра­же­ния (x5 ≡ x6) су­ще­ству­ет 2 · 4 = 8 на­бо­ров пе­ре­мен­ных x1, x2. x6, удо­вле­тво­ря­ю­щих пер­во­му урав­не­нию (см. пер­вый и вто­рой ри­су­нок). Таким об­ра­зом, си­сте­ма из трёх урав­не­ний имеет 8 · 4 = 32 ре­ше­ния.

Ана­ло­гич­но си­сте­ма из четырёх урав­не­ний будет иметь 64 ре­ше­ния, си­сте­ма из пяти урав­не­ний — 128.

За­да­ние 1. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние J ∧ ¬ K ∧ L ∧ ¬ M ∧ (N ∨ ¬ N) = 0, где J, K, L, M, N — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний J, K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Вы­ра­же­ние (N ∨ ¬ N) ис ­ тин ­ но при любом N, по ­ это ­ му

J ∧ ¬ K ∧ L ∧ ¬ M = 0.

При­ме­ним от­ри­ца­ние к обеим ча­стям ло­ги­че­ско­го урав­не­ния и ис­поль­зу­ем закон де Мор­га­на ¬ (А ∧ В ) = ¬ А ∨ ¬ В . По ­ лу ­ чим

Ло­ги­че­ская сумма равна 1, если хотя бы одно из со­став­ля­ю­щих ее вы­ска­зы­ва­ний равно 1. По­это­му по­лу­чен­но­му урав­не­нию удо­вле­тво­ря­ют любые ком­би­на­ции ло­ги­че­ских пе­ре­мен­ных кроме слу­чая, когда все вхо­дя­щие в урав­не­ние ве­ли­чи­ны равны 0. Каж­дая из 4 пе­ре­мен­ных может быть равна либо 1, либо 0, по­это­му все­воз­мож­ных ком­би­на­ций 2·2·2·2 = 16. Сле­до­ва­тель­но, урав­не­ние имеет 16 −1 = 15 ре­ше­ний.

Оста­лось за­ме­тить, что най­ден­ные 15 ре­ше­ний со­от­вет­ству­ют лю­бо­му из двух воз­мож­ных зна­че­ний зна­че­ний ло­ги­че­ской пе­ре­мен­ной N, по­это­му ис­ход­ное урав­не­ние имеет 30 ре­ше­ний.

За­да­ние 2. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬ K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний J, K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Ис­поль­зу­ем фор­му­лы A → B = ¬ A ∨ B и ¬ ( А ∨ В ) = ¬А ∧ ¬В

Рас­смот­рим первую под­фор­му­лу:

(J → K) → (M ∧ N ∧ L) = ¬ ( ¬ J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬ K) ∨ (M ∧ N ∧ L)

Рас­смот­рим вто­рую под­фор­му­лу

(J ∧ ¬ K) → ¬ (M ∧ N ∧ L) = ¬ (J ∧ ¬ K) ∨ ¬ (M ∧ N ∧ L) = ( ¬ J ∨ K) ∨ ¬ M ∨ ¬ N ∨ ¬ L

Рас­смот­рим тре­тью под­фор­му­лу

1) M → J = 1 сле ­ до ­ ва ­ тель ­но,

(J ∧ ¬ K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬ K) ∨ (1 ∧ N ∧ L) = ¬ K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬ N ∨ ¬ L = K ∨ ¬ N ∨ ¬ L;

¬K ∨ N ∧ L ∧ K ∨ ¬ N ∨ ¬ L = 0 ∨ L ∨ 0 ∨ ¬ L = L ∨ ¬ L = 1 сле ­ до ­ ва ­ тель ­ но , 4 ре ­ ше ­ ния .

(J ∧ ¬ K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬ K) ∨ (0 ∧ N ∧ L) = ¬ K;

(¬J ∨ K) ∨ ¬ M ∨ ¬ N ∨ ¬ L = (0 ∨ K) ∨ 1 ∨ ¬ N ∨ ¬ L = K ∨ 1 ∨ ¬ N ∨ ¬ L

K ∨ 1 ∨ ¬ N ∨ ¬ L ∧ ¬ K = 1 ∨ ¬ N ∨ ¬ L сле ­ до ­ ва ­ тель ­ но , 4 ре ­ ше ­ ния .

(J ∧ ¬ K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬ K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬ M ∨ ¬ N ∨ ¬ L = (1 ∨ K) ∨ 1 ∨ ¬ N ∨ ¬ L.

За­да­ние 3. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние:

¬((J → K) → (L ∧ M ∧ N)) ∨ ¬ ((L ∧ M ∧ N) → ( ¬ J ∨ K)) ∨ (M ∧ J) = 0

Ис­поль­зу­ем фор­му­лу A → B = ¬ A ∨ B

Рас­смот­рим первую под­фор­му­лу:

¬((¬J ∨ K) → (M ∧ N ∧ L)) = ¬ ( ¬ ( ¬ J ∨ K) ∨ (M ∧ N ∧ L)) = ¬ ((J ∧ ¬ K) ∨ (M ∧ N ∧ L)) =

Учи­ты­вая, что ¬(А ∨ В ) = ¬А ∧ ¬В ,

= (¬J ∨ K) ∧ ( ¬ M ∨ ¬ N ∨ ¬ L)

Рас­смот­рим вто­рую под­фор­му­лу

¬((L ∧ M ∧ N) → ( ¬ J ∨ K)) = ¬ ( ¬ (L ∧ M ∧ N) ∨ ( ¬ J ∨ K)) = L ∧ M ∧ N ∧ J ∧ ¬ K

При­ме­ним от­ри­ца­ние к левой и пра­вой части урав­не­ния, по­лу­чит­ся

[(J ∧ ¬ K) ∨ (M ∧ N ∧ L)] ∧ [ ¬ L ∨ ¬ M ∨ ¬ N ∨ ¬ J ∨ K] ∧ [ ¬ M ∨ ¬ J] = 1

1) (¬M ∨ ¬ J) = 1, сле ­ до ­ ва ­ тель ­ но ,

0 ∧ ¬ K ∧ ¬ L ∨ ¬ N ∨ K, сле ­ до ­ ва ­ тель ­ но , 0 ре ­ ше ­ ний .

[(0 ∧ ¬ K) ∨ (1 ∧ N ∧ L)] ∧ [ ¬ L ∨ 0 ∨ ¬ N ∨ 1 ∨ K] ∧ [ ¬ M ∨ 1] = N ∧ L ∧ ¬ L ∨ ¬ N ∨ 1 ∨ K = 1 => L=N=1, сле­до­ва­тель­но, 2 ре­ше­ния.

[(1 ∧ ¬ K) ∨ (0 ∧ N ∧ L)] ∧ [ ¬ L ∨ ¬ 0 ∨ ¬ N ∨ ¬ 1 ∨ K] ∧ [ ¬ 0 ∨ ¬ 1] = 1, сле ­ до ­ ва ­ тель ­ но , 4 ре ­ ше ­ ния .

За­да­ние 4. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – ло­ги­че­ские пе­ре­мен­ные? В От­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве От­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

пе­ре­пи­шем урав­не­ние, ис­поль­зуя более про­стые обо­зна­че­ния опе­ра­ций:

((K + L) → (L · M · N)) = 0

1) из таб­ли­цы ис­тин­но­сти опе­ра­ции «им­пли­ка­ция» (см. первую за­да­чу) сле­ду­ет, что это ра­вен­ство верно тогда и толь­ко тогда, когда од­но­вре­мен­но

K + L = 1 и L · M · N = 0

2) из пер­во­го урав­не­ния сле­ду­ет, что хотя бы одна из пе­ре­мен­ных, K или L, равна 1 (или обе вме­сте); по­это­му рас­смот­рим три слу­чая

3) если K = 1 и L = 0, то вто­рое ра­вен­ство вы­пол­ня­ет­ся при любых М и N; по­сколь­ку су­ще­ству­ет 4 ком­би­на­ции двух ло­ги­че­ских пе­ре­мен­ных (00, 01, 10 и 11), имеем 4 раз­ных ре­ше­ния

4) если K = 1 и L = 1, то вто­рое ра­вен­ство вы­пол­ня­ет­ся при М · N = 0; су­ще­ству­ет 3 таких ком­би­на­ции (00, 01 и 10), имеем еще 3 ре­ше­ния

5) если K = 0, то обя­за­тель­но L = 1 (из пер­во­го урав­не­ния); при этом вто­рое ра­вен­ство вы­пол­ня­ет­ся при М · N = 0; су­ще­ству­ет 3 таких ком­би­на­ции (00, 01 и 10), имеем еще 3 ре­ше­ния

6) всего по­лу­ча­ем 4 + 3 + 3 = 10 ре­ше­ний.

За­да­ние 5. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

где K, L, M, N – ло­ги­че­ские пе­ре­мен­ные? В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать толь­ко ко­ли­че­ство таких на­бо­ров.

Вы­ра­же­ние ис­тин­но в трех слу­ча­ях, когда (K ∧ L) и (M ∧ N) равны со ­ от ­ вет ­ ствен ­ но 01, 11, 10.

1) «01» K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые , кроме как од ­ но ­ вре ­ мен ­ но 1. Сле ­ до ­ ва ­ тель ­ но 3 ре ­ ше ­ ния .

2) «11» K ∧ L = 1; M ∧ N = 1. => 1 ре ­ ше ­ ние .

3) «10» K ∧ L = 1; M ∧ N = 0. => 3 ре ­ ше ­ ния .

За­да­ние 6. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

(X ∧ Y ∨ Z) → (Z ∨ P) = 0

где X, Y, Z, P – ло­ги­че­ские пе­ре­мен­ные? В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать толь­ко ко­ли­че­ство таких на­бо­ров.

При­ме­ним пре­об­ра­зо­ва­ние им­пли­ка­ции:

(X ∧ Y ∨ Z) → (Z ∨ P) = 0 =>

¬(X ∧ Y ∨ Z) ∨ (Z ∨ P) = 0;

(¬X ∨ ¬ Y ∧ ¬ Z) ∨ (Z ∨ P) = 0;

Ло­ги­че­ское ИЛИ ложно толь­ко в одном слу­чае: когда оба вы­ра­же­ния ложны.

(Z ∨ P) = 0 => Z = 0, P = 0.

¬X ∨ ¬ Y ∧ ¬ Z = 0 => ¬ X ∨ ¬ Y ∧ 1 = 0 =>

¬X ∨ ¬ Y = 0 => X = 1; Y = 1.

Сле­до­ва­тель­но, су­ще­ству­ет толь­ко одно ре­ше­ние урав­не­ния.

За­да­ние 7. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

(X ∨ Y ∨ Z) → (X ∧ P) = 1

где X, Y, Z, P – ло­ги­че­ские пе­ре­мен­ные? В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать толь­ко ко­ли­че­ство таких на­бо­ров.

При­ме­ним пре­об­ра­зо­ва­ние им­пли­ка­ции:

(X ∨ Y ∨ Z) → (X ∧ P) = 1;

¬(X ∨ Y ∨ Z) ∨ (X ∧ P) = 1;

(¬X ∧ ¬ Y ∧ ¬ Z) ∨ (X ∧ P) = 1; (1)

Ло­ги­че­ское «ИЛИ» ложно , когда ложны оба утвер­жде­ния.

Ло­ги­че­ское «И» ис­тин­но толь­ко тогда, когда ис­тин­ны оба утвер­жде­ния.

(¬X ∧ ¬ Y ∧ ¬ Z) = 1 тогда X = 0, Y = 0, Z = 0.

Тогда из (1) сле­ду­ет, что P может быть как 1, так и 0, то есть 2 на­бо­ра ре­ше­ний.

(¬X ∧ ¬ Y ∧ ¬ Z) = 0, (X ∧ P) = 1.

Тогда P = 1, X = 1.

(0 ∧ ¬ Y ∧ ¬ Z) = 0 => есть 4 ре ­ ше ­ ния .

В итоге 6 ре­ше­ний.

За­да­ние 8. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

где K, L, M, N – ло­ги­че­ские пе­ре­мен­ные? В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать толь­ко ко­ли­че­ство таких на­бо­ров.

Ло­ги­че­ское И ис­тин­но толь­ко в одном слу­чае: когда все вы­ра­же­ния ис­тин­ны.

K ∨ L = 1, M ∨ N = 1.

Каж­дое из урав­не­ний дает по 3 ре­ше­ния.

Рас­смот­рим урав­не­ние А ∧ В = 1 если и А и В при ­ ни ­ ма ­ ют ис ­ тин ­ ные зна ­ че ­ ния в трех слу­ча­ях каж­дое, то в целом урав­не­ние имеет 9 ре­ше­ний.

Сле­до­ва­тель­но ответ 9.

За­да­ние 9. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

((A → B) ∧ C) ∨ (D ∧ ¬ D)= 1,

где A, B, C, D – ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний A, B, C, D, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Ло­ги­че­ское «ИЛИ» ис­тин­но , когда ис­тин­но хотя бы одно из утвер­жде­ний.

(D ∧ ¬ D)= 0 при любых D.

(A → B) ∧ C) = 1 => C = 1; A → B = 1 => ¬ A ∨ B = 1, что дает нам 3 ва ­ ри ­ ан ­ та ре ­ ше ­ ний при каж ­ дом D.

(D ∧ ¬ D)= 0 при любых D, что дает нам два ва­ри­ан­та ре­ше­ний (при D = 1, D = 0).

Сле­до­ва­тель­но: всего ре­ше­ний 2*3 = 6.

Итого 6 ре­ше­ний.

За­да­ние 10. Сколь­ко раз­лич­ных ре­ше­ний имеет урав­не­ние

(¬K ∨ ¬ L ∨ ¬ M) ∧ (L ∨ ¬ M ∨ ¬ N) = 0

где K, L, M, N – ло­ги­че­ские пе­ре­мен­ные? В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний K, L, M и N, при ко­то­рых вы­пол­не­но дан­ное ра­вен­ство. В ка­че­стве от­ве­та вам нужно ука­зать толь­ко ко­ли­че­ство таких на­бо­ров.

При­ме­ним от­ри­ца­ние к обеим ча­стям урав­не­ния:

(K ∧ L ∧ M) ∨ ( ¬ L ∧ M ∧ N) = 1

Ло­ги­че­ское ИЛИ ис­тин­но в трех слу­ча­ях.

K ∧ L ∧ M = 1, тогда K, L, M = 1, а ¬ L ∧ M ∧ N = 0. N любое , то есть 2 ре ­ ше ­ ния .

¬L ∧ M ∧ N = 1, тогда N, M = 1; L = 0, K любое , то есть 2 ре ­ ше ­ ния .

Сле­до­ва­тель­но, ответ 4.

Системы логических уравнений, содержащие не однотипные уравнения

За­да­ние 1. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → x2) ∧ (x2 → x3) ∧ (x3 → x4) ∧ (x4 → x5 ) = 1

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) ∧ (y4 → y5 ) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем три ва­ри­ан­та — x1=1, y1=1; x1=0, y1=1; x1=1, y1=0.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x (или y) в по­ряд­ке воз­рас­та­ния их но­ме­ров, слева будут нули, а спра­ва — еди­ни­цы.

4) Рас­смот­рим ва­ри­ант x1=1, y1=1. Так как пер­вые числа каж­до­го ряда равны 1, то все сле­ду­ю­щие тоже равны 1. Су­ще­ству­ет толь­ко одна ком­би­на­ция для этого ва­ри­ан­та.

5) Рас­смот­рим ва­ри­ант x1=0, y1=1. Для y-ряда все пе­ре­мен­ные равны 1, для x же су­ще­ству­ет 5 ком­би­на­ций, так как в ряде x может быть от 1 до 5 нолей вклю­чи­тель­но.

6) По­след­ний ва­ри­ант рас­смот­рим ана­ло­гич­но преды­ду­ще­му. Там су­ще­ству­ет всего 5 ком­би­на­ций.

Пра­виль­ный ответ: 5+5+1=11 ком­би­на­ций.

За­да­ние 2. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → x2) ∧ (x2 → x3) ∧ (x3 → x4) ∧ (x4 → x5 ) = 1

(y5 → y4) ∧ (y4 → y3) ∧ (y3 → y2) ∧ (y2 → y1 ) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем x3=1, y3=1.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло, толь­ко на­о­бо­рот: из пе­ре­мен­ной с более вы­со­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более низ­ким. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x в по­ряд­ке воз­рас­та­ния их но­ме­ров, спра­ва будут еди­ни­цы, а слева — нули, в y — на­про­тив, слева еди­ни­цы, спра­ва — нули.

4) Рас­смот­рим ва­ри­ант x3=1, y3=1. Тогда все сле­ду­ю­щие: x4, x5, y2, y1 тоже равны 1. Оста­ют­ся пе­ре­мен­ные x1, x2, y4, y5. Так как x2 сле­ду­ет из x1, для них мы имеем 3 ва­ри­ан­та, ана­ло­гич­но для y4 и y5. 3 3=9.

За­да­ние 3. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, y1, y2 y3, y4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → x2) ∧ (x2 → x3) ∧ (x3 → x4) = 1

(¬y1 ∨ y2) ∧ ( ¬ y2 ∨ y3) ∧ ( ¬ y3 ∨ y4) = 1

(y1 → x1) ∧ (y2 → x2) ∧ (y3 → x3) ∧ (y4 → x4) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, y1, y2 y3, y4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Конъ­юнк­ция ис­ти­на тогда и толь­ко тогда, когда каж­дое вы­ска­зы­ва­ние ис­тин­но.

Для пер­во­го вы­ра­же­ния это озна­ча­ет, что, если х1 равен 1, то х2, х3 и х4 также равны 1, т. е. для х1. х4 ре­ше­ния су­ще­ству­ют толь­ко в виде «1111», «0111», «0011», «0001» и «0000».

При­ме­нив пре­об­ра­зо­ва­ние им­пли­ка­ции ко вто­ро­му вы­ра­же­нию, уви­дим, что оно ана­ло­гич­но пер­во­му.

В тре­тьем вы­ра­же­нии из «y» сле­ду­ет со­от­вет­ству­ю­щее ему «x», это озна­ча­ет, что если y = 1, то и x = 1.

Сле­до­ва­тель­но, пер­во­му на­бо­ру для x «1111» со­от­вет­ству­ет 5 на­бо­ров y. Вто­ро­му — 4, тре­тье­му — 3, и. т. д.

Сле­до­ва­тель­но, ответ: 5 + 4 + 3 + 2 + 1 = 15.

За­да­ние 4. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → x2) ∧ (x2 → x3) ∧ (x3 → x4) ∧ (x4 → x5 ) = 1

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) ∧ (y4 → y5 ) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем три ва­ри­ан­та — x1=1, y1=1; x1=0, y1=1; x1=0, y1=0.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x (или y) в по­ряд­ке воз­рас­та­ния их но­ме­ров, спра­ва будут еди­ни­цы, а слева — нули.

4) Рас­смот­рим ва­ри­ант x1=1, y1=1. Так как пер­вые числа каж­до­го ряда равны 1, то все сле­ду­ю­щие тоже равны 1. Су­ще­ству­ет толь­ко одна ком­би­на­ция для этого ва­ри­ан­та.

5) Рас­смот­рим ва­ри­ант x1=0, y1=1. Для y-ряда все пе­ре­мен­ные равны 1, для x же су­ще­ству­ет 5 ком­би­на­ций, так как в ряде x может быть от 1 до 5 нолей вклю­чи­тель­но.

6) По­след­ний ва­ри­ант рас­смот­рим ана­ло­гич­но преды­ду­ще­му. Там су­ще­ству­ет всего 25 ком­би­на­ций.

Пра­виль­ный ответ: 25+5+1=31 ком­би­на­ция.

За­да­ние 5. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, хЗ, х4, х5, хб, y1, у2, уЗ, у4, у5, у6 ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х 2) ∧ ( х 2 → хЗ ) ∧ ( хЗ → х 4) ∧ ( х 4 → х 5) ∧ ( х 5 → х 6) = 1

(y1 → y2) ∧ ( у 2 → уЗ ) ∧ ( уЗ → у 4) ∧ ( у 4 → у 5) ∧ ( у 5 → у 6) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, хЗ, х4, х5, y1, у2, уЗ, у4, у5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем три ва­ри­ан­та — x1=1, y1=1; x1=0, y1=1; x1=1, y1=0.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x (или y) в по­ряд­ке воз­рас­та­ния их но­ме­ров, спра­ва будут нули, а слева — еди­ни­цы.

4) Рас­смот­рим ва­ри­ант x1=1, y1=1. Так как пер­вые числа каж­до­го ряда равны 1, то все сле­ду­ю­щие тоже равны 1. Су­ще­ству­ет толь­ко одна ком­би­на­ция для этого ва­ри­ан­та.

5) Рас­смот­рим ва­ри­ант x1=0, y1=1. Для y-ряда все пе­ре­мен­ные равны 1, для x же су­ще­ству­ет 6 ком­би­на­ций, так как в ряде x может быть от 1 до 6 нолей вклю­чи­тель­но.

6) По­след­ний ва­ри­ант рас­смот­рим ана­ло­гич­но преды­ду­ще­му. Там су­ще­ству­ет всего 6 ком­би­на­ций.

Пра­виль­ный ответ: 6+6+1=13 ком­би­на­ций.

За­да­ние 6. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, хЗ, х4, х5, y1, у2, уЗ, у4, у5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х 2) ∧ ( х 2 → хЗ ) ∧ ( хЗ → х 4) ∧ ( х 4 → х 5 ) = 1

(y1 → y2) ∧ ( у 2 → уЗ ) ∧ ( уЗ → у 4) ∧ ( у 4 → у 5 ) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, хЗ, х4, х5, y1, у2, уЗ, у4, у5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем три ва­ри­ан­та — x1=1, y1=1; x1=0, y1=1; x1=1, y1=0.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x (или y) в по­ряд­ке воз­рас­та­ния их но­ме­ров, спра­ва будут нули, а слева — еди­ни­цы.

4) Рас­смот­рим ва­ри­ант x1=1, y1=1. Так как пер­вые числа каж­до­го ряда равны 1, то все сле­ду­ю­щие тоже равны 1. Су­ще­ству­ет толь­ко одна ком­би­на­ция для этого ва­ри­ан­та.

5) Рас­смот­рим ва­ри­ант x1=0, y1=1. Для y-ряда все пе­ре­мен­ные равны 1, для x же су­ще­ству­ет 5 ком­би­на­ций, так как в ряде x может быть от 1 до 5 нолей вклю­чи­тель­но.

6) По­след­ний ва­ри­ант рас­смот­рим ана­ло­гич­но преды­ду­ще­му. Там су­ще­ству­ет всего 5 ком­би­на­ций.

Пра­виль­ный ответ: 5+5+1=11 ком­би­на­ций.

За­да­ние 7. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → x2) ∧ (x2 → x3) ∧ (x3 → x4) ∧ (x4 → x5 ) = 1

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) ∧ (y4 → y5 ) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

1) Из по­след­не­го урав­не­ния сле­ду­ет, что гло­баль­но мы имеем три ва­ри­ан­та: x5=1, y5=1; x5=0, y5=0; x5=0, y5=1.

2) Ло­ги­че­ское И ис­тин­но, толь­ко тогда, когда ис­ти­ны все утвер­жде­ния, а им­пли­ка­ция ложна толь­ко в слу­чае, если из ис­тин­но­го сле­ду­ет лож­ное.

3) Урав­не­ние (1) опи­сы­ва­ет ряд пе­ре­мен­ных . Так как из пе­ре­мен­ной с более низ­ким но­ме­ром все­гда сле­ду­ет пе­ре­мен­ная с более вы­со­ким, если любую пе­ре­мен­ную из этого ряда при­рав­нять 1, то все сле­ду­ю­щие долж­ны также быть равны 1. Для урав­не­ния (2) су­ще­ству­ет то же самое пра­ви­ло. Иначе го­во­ря, если за­пи­сать пе­ре­мен­ные x в по­ряд­ке воз­рас­та­ния их но­ме­ров, спра­ва будут нули, а слева — еди­ни­цы, в y — так же.

4) Рас­смот­рим ва­ри­ант x5=1, y5=1. Тогда осталь­ные пе­ре­мен­ные могут при­ни­мать любые зна­че­ния: всего таких ком­би­на­ций 25.

5) Рас­смот­рим ва­ри­ант х5=0, у5=0. Тогда все пе­ре­мен­ные равны 0, сле­до­ва­тель­но, 1 ком­би­на­ция.

6) Рас­смот­рим ва­ри­ант х5=0, у5=1. Тогда все пе­ре­мен­ные х равны 0, а пе­ре­мен­ные у могут при­ни­мать любые зна­че­ния. Всего таких ком­би­на­ций 5.

За­да­ние 8. Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, хЗ, х4, х5, у1, у2, уЗ, у4, у5, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, хЗ, х4, х5, у1, у2, уЗ, у4, у5, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

За­ме­тим, что пер­вые два урав­не­ния свя­за­ны друг с дру­гом толь­ко через тре­тье.

Най­дем ко­ли­че­ство ре­ше­ний пер­во­го урав­не­ния. Каж­дая из пе­ре­мен­ных x1, . , x5 может при­ни­мать толь­ко два зна­че­ния. Им­пли­ка­ция ложна толь­ко тогда, когда из ис­ти­ны сле­ду­ет ложь. Если за­пи­сать зна­че­ния пе­ре­мен­ных под­ряд, то можно уви­деть, что для того, чтобы ра­вен­ство вы­пол­ня­лось, не­об­хо­ди­мо, чтобы после «1» ни­ко­гда не стоял «0». Сле­до­ва­тель­но, по­лу­ча­ем такие ре­ше­ния: (x1,x2,x3,x4,x5) = 00000, 00001, 00011, 00111, 01111, 11111.

Во вто­ром урав­не­нии не­об­хо­ди­мо, чтобы после «0» ни­ко­гда не сто­я­ла «1». Сле­до­ва­тель­но, по­лу­ча­ем такие ре­ше­ния: (y1,y2,y3,y4,y5) = 00000, 10000, 11000, 11100, 11110, 11111. Таким об­ра­зом, си­сте­ма из двух урав­не­ний имеет 6·6 = 36 ре­ше­ний: для каж­до­го на­бо­ра пе­ре­мен­ных y су­ще­ству­ет 6 на­бо­ров пе­ре­мен­ных x.

📹 Видео

Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать

Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логика

Решить систему логических уравнений. Метод декомпозицииСкачать

Решить систему логических уравнений. Метод декомпозиции

Системы логических уравнений содержащие НЕОДНОТИПНЫЕ УРАВНЕНИЯ [Алгебра логики] #8Скачать

Системы логических уравнений содержащие НЕОДНОТИПНЫЕ УРАВНЕНИЯ [Алгебра логики] #8

23 задание Информатика ЕГЭ Система логических уравнений Часть 10Скачать

23 задание Информатика ЕГЭ Система логических уравнений Часть 10

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Системы логических уравнений и логические уравнения - ЕГЭ по Информатике - Задание №23Скачать

Системы логических уравнений и логические уравнения - ЕГЭ по Информатике - Задание №23

Системы логических уравнений - 1 тип (метод отображения)Скачать

Системы логических уравнений - 1 тип (метод отображения)

ПОДГОТОВКА К ЕГЭ. ИНФОРМАТИКА. УРОК 2. РЕШЕНИЕ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ОТОБРАЖЕНИЯСкачать

ПОДГОТОВКА К ЕГЭ. ИНФОРМАТИКА. УРОК 2. РЕШЕНИЕ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ОТОБРАЖЕНИЯ

23 задание Информатика ЕГЭ Система логических уравнений Часть 1Скачать

23 задание Информатика ЕГЭ Система логических уравнений Часть 1

Системы логических уравнений ЕГЭ 2019Скачать

Системы логических уравнений ЕГЭ 2019

Разбор задания 23 пробного ЕГЭ 27.02. Системы логических уравнений. ЕГЭ по информатике 2015Скачать

Разбор задания 23 пробного ЕГЭ 27.02. Системы логических уравнений. ЕГЭ по информатике 2015

Информатика ЕГЭ 2016 N15.04 : Сколько существует различных путейСкачать

Информатика ЕГЭ 2016 N15.04 : Сколько существует различных путей

23 задание Информатика ЕГЭ Система логических уравнений Часть 11Скачать

23 задание Информатика ЕГЭ Система логических уравнений Часть 11

23 задание Информатика ЕГЭ Система логических уравнений Часть 9Скачать

23 задание Информатика ЕГЭ Система логических уравнений Часть 9

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Решение систем логических уравнений. Часть 1. 09042020Скачать

Решение систем логических уравнений. Часть 1. 09042020

Разбор 23 задания демоверсия егэ по информатике 2019 ФИПИ | Сколько существует различных наборовСкачать

Разбор 23 задания демоверсия егэ по информатике 2019 ФИПИ | Сколько существует различных наборов

Количество решений системы уравнений. УпражнениеСкачать

Количество решений системы уравнений. Упражнение
Поделиться или сохранить к себе: