Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Как рассчитать кол-во вариантов?

Сколько решений имеет уравнение x + y + z = 8:
a) в целых неотрицательных числах;
b) в целых положительных числах?

Сколько можно составить из цифр 1, 2, 3, 4:
a) двузначных чисел;
b) двузначных чисел с различными цифрами;

  • Вопрос задан более трёх лет назад
  • 4989 просмотров

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Вы поставили совершенно верный тег — Комбинаторика. Этот раздел математики и начинался как метод подсчета количества различных вариантов/комбинаций.

Наиболее часто задачи на комбинаторику подразумевают последовательное фиксирование количества состояний переменных одной за одной.

Давайте начнем со второй задачи — она несколько проще.

2а) Первую цифру двузначного числа с заданными условиями можно выбрать 4 способами; после того как первая цифра определена, вторую можно выбрать снова 4 способами. Итого вариантов 4х4=16.
2б) Первую цифру двузначного числа с заданными условиями можно выбрать 4 способами; после того как первая цифра определена, вторую можно выбрать уже только тремя способами, т.к. цифра не может совпасть с той которая на первой позиции. Итого вариантов 4х3=12.

1а) Целых неотрицательных, которые могут сыграть роль «x», — 9 (от 0 до 8 включительно). После того как «x» зафиксирован, «y» может быть выбран (8-x+1) способами, например, если х=7, то остается для «y» только 0 и 1. После того как «х» и «y» зафиксированы, «z» всегда можно выбрать только 1 способом, следовательно, количество вариантов решений он не увеличивает. Осталось посчитать сумму кол-ва возможных комбинаций (считаем по «y»-кам) = (9+8+7+. +1) — по формуле суммы арифметической прогрессии — 10*9/2 = 45. И соответственно, Ваш ответ неверен.

1б) Аналогично, но уменьшая кол-во «x»-ов до 6 (от 1 до 6 включительно), а кол-во «y» до (7-х) способов. Сумма (6+5+. +1) = 7*6/2 = 21.

Видео:Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6Скачать

Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

а) Сколько решений в неотрицательных целых числах имеет уравнение a + b = 99?

б) Сколько решений в неотрицательных целых числах имеет система уравнений

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

в) Сколько решений в неотрицательных целых числах имеет уравнение a + b + c =99?

а) Для любого Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020существует ровно одно значение b, удовлетворяющее уравнению. Всего таких a сто штук.

б) Первое уравнение системы имеет ровно 100 решений. Второе уравнение, аналогично, имеет ровно 100 решений. Для каждой пары (a;b), удовлетворяющей первому уравнению, существует ровно 100 пар (c;d), удовлетворяющих второму уравнению. Поэтому общее количество решений системы равно Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

в) Пусть a=0. Получим уравнение b+с=99. Тогда существует ровно 100 пар (b;c), удовлетворяющих уравнению. Пусть теперь а=1. Получим уравнение b+с=98. Аналогично, существует ровно 99 пар (b;c), удовлетворяющих уравнению. И так далее, для а=99 существует ровно 1 пара (b;c), удовлетворяющая уравнению. Таким образом, всего получается Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020решений.

Ответ: а) 100; б) 10000; в) 5050.

Критерии оценивания выполнения заданияБаллы
Верно получены все перечисленные (см. критерий на 1 балл) результаты.4
Верно получены три из перечисленных (см. критерий на 1 балл) результатов.3
Верно получены два из перечисленных (см. критерий на 1 балл) результатов.2
Верно получен один из следующих результатов:

— обоснованное решение п. б;

— обоснование в п. в того, что S может принимать все целые значения (отличные от −1 и 1);

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Метод подсчёта количества решений

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.

В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.

Общая форма интересующего нас уравнения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

где n и m — положительные целые числа.

Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.

Видео:Показать, что уравнение x³+y³+z³=41 не имеет решений в целых числахСкачать

Показать, что уравнение x³+y³+z³=41 не имеет решений в целых числах

Нам нужен метод

Давайте начнём с частного случая общего уравнения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

и мы сможем подсчитать число решений — m+1.

Это было просто, верно?

Теперь возьмём немного более сложный вариант с тремя переменными, скажем:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Число решений в этом случае равно 10.

Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.

Значит, нужен эффективный метод.

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Разрабатываем метод

Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Одним из решений было (5, 0). Давайте преобразуем его в:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.

В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.

Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.

Эта формула обычно записывается в компактной форме как:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Это то же самое число, что мы получили методом прямого счёта!

Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Некоторые решения можно записать в разложенном виде:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

как и утверждалось выше.

Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Простейшее решение этого уравнения:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:

Сколько решений в целых неотрицательных числах имеет уравнение a b c d e 2020

В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).

Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:

📹 Видео

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравненияСкачать

ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравнения

Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?Скачать

Решите уравнение в целых числах 3x^2+5y^2=345 ✱ Диофантовы уравнения ✱ Как решать?

О решении уравнений в целых числахСкачать

О решении уравнений в целых числах

Вебинар: Решение линейных уравнений в целых числах. Метод цепных дробейСкачать

Вебинар: Решение линейных уравнений в целых числах. Метод цепных дробей

Нелинейное диофантово уравнение в простых числах (Олимпиады)Скачать

Нелинейное диофантово уравнение в простых числах (Олимпиады)

Вступительная в 10 класс. Президентский физико-математический лицей №239. 2020 год. 1 вариант.Скачать

Вступительная в 10 класс. Президентский физико-математический лицей №239. 2020 год. 1 вариант.

✓ Задача про 200.000 | Ботай со мной #095 | Борис ТрушинСкачать

✓ Задача про 200.000 | Ботай со мной #095 | Борис Трушин

9 класс, 26 урок, Комбинаторные задачиСкачать

9 класс, 26 урок, Комбинаторные задачи

100 задач абитуриента #1- 35Скачать

100 задач абитуриента #1- 35

Диофантовы уравнения x³-y³=91Скачать

Диофантовы уравнения x³-y³=91

Математика это не ИсламСкачать

Математика это не Ислам

Уравнение в натуральных числах. Задача для любителей диофантовых уравнений и олимпиадСкачать

Уравнение в натуральных числах. Задача для любителей диофантовых уравнений и олимпиад

Сложение и вычитание рациональных чисел. 6 класс.Скачать

Сложение и вычитание рациональных чисел. 6 класс.

как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫСкачать

как ЛЕГКО сложить отрицательные числа , ПРИМЕРЫ

17. Решение линейных уравнений в целых числах. Часть 2. Алексей Савватеев. 100 уроков математики 6+Скачать

17. Решение линейных уравнений в целых числах. Часть 2. Алексей Савватеев. 100 уроков математики 6+
Поделиться или сохранить к себе: