Сколько решений имеет уравнение примеры

Метод подсчёта количества решений

Сколько решений имеет уравнение примеры

Линейные алгебраические уравнения — одни из самых простых уравнений, которые мы можем решить. Если в уравнении только одна переменная, решение тривиально, в то время как для системы линейных уравнений существует множество способов найти уникальные решения.

В этой статье нас интересует частный случай линейного уравнения с несколькими переменными. Хорошо известно, что подобное уравнение имеет бесконечное число решений. Мы наложим определённые ограничения и в значительной степени сократим количество решений.

Общая форма интересующего нас уравнения:

Сколько решений имеет уравнение примеры

где n и m — положительные целые числа.

Наша задача — найти число решений этого уравнения, предполагая, что xᵢ являются целыми числами. Это предположение значительно снижает число решений заданного уравнения.

Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать

Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логика

Нам нужен метод

Давайте начнём с частного случая общего уравнения:

Сколько решений имеет уравнение примеры

Нетрудно найти все решения этого уравнения методом простого счёта. Решения заданы парами (x₁, x₂):

Сколько решений имеет уравнение примеры

Мы видим, что уравнение имеет шесть решений. Также нетрудно предположить, что, если мы заменим правую часть определённым положительным целым числом m, решения будут выглядеть так:

Сколько решений имеет уравнение примеры

и мы сможем подсчитать число решений — m+1.

Это было просто, верно?

Теперь возьмём немного более сложный вариант с тремя переменными, скажем:

Сколько решений имеет уравнение примеры

С несколько большими усилиями, чем в предыдущем примере, находим решения в виде наборов из трёх чисел (x₁, x₂, x₃):

Сколько решений имеет уравнение примеры

Число решений в этом случае равно 10.

Легко представить, что метод прямого счёта может стать очень утомительным для уравнения с большим количеством переменных. Он также становится утомительным, если целое число в правой части уравнения становится больше — например, если в правой части у нас будет 8, а не 3, решений будет уже 45. Разумеется, не хотелось бы искать все эти решения методом прямого счёта.

Значит, нужен эффективный метод.

Видео:Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

Разрабатываем метод

Существует ещё один способ, которым можно решить предыдущие два уравнения. Давайте снова начнём с этого уравнения:

Сколько решений имеет уравнение примеры

Одним из решений было (5, 0). Давайте преобразуем его в:

Сколько решений имеет уравнение примеры

Мы разложили решение на нули и единицы, соответствующие каждому числу. Ненулевую часть (в данном случае 5) мы разложили на соответствующее число единиц, а ноль преобразовали в ноль. Таким же образом мы можем разложить и другое решение:

Сколько решений имеет уравнение примеры

Мы поменяли прежнее расположение нуля, чтобы получить новое решение. Итак, два числа в парах (обозначенные красным и голубым) разделены нулём (чёрный) в разложенном виде. Таким же образом запишем оставшиеся решения:

Сколько решений имеет уравнение примеры

Записав решения таким образом, видим закономерность. Кажется, все решения — это просто перестановки нулей и единиц. Вопрос о том, сколько существует решений, становится эквивалентным вопросу как много таких перестановок нулей и единиц может быть сделано, начиная с любой из конфигураций.

В данном случае у нас есть 6 местоположений в разложенной конфигурации для размещения нулей и единиц. Мы можем выбрать простейшее решение в качестве начальной конфигурации:

Сколько решений имеет уравнение примеры

Теперь всё, что нам нужно найти, это общее число способов, которыми можно заполнить шесть местоположений пятью единицами и одним нулём.

Подобные задачи подсчёта мы можем решить различными способами, но наиболее эффективным будет способ, разработанный в такой области математики как комбинаторика, которая даёт нам формулу для числа способов перестановки r объектов в n местоположений:

Сколько решений имеет уравнение примеры

где n! (читается как “n факториал”) определяется как произведение всех целых чисел от 1 до n, т.е. n! = 1 × 2 × 3 × ⋅ ⋅ ⋅ × n. Мы также определяем 0! = 1.

Эта формула обычно записывается в компактной форме как:

Сколько решений имеет уравнение примеры

Теперь, возвращаясь к задаче, мы можем использовать эту формулу для нахождения числа способов перестановки пяти единиц в шести местоположениях:

Сколько решений имеет уравнение примеры

Это то же самое число, что мы получили методом прямого счёта!

Выглядит многообещающе, поэтому давайте проверим, сможем ли мы найти таким способом число решений второго линейного уравнения:

Сколько решений имеет уравнение примеры

Некоторые решения можно записать в разложенном виде:

Сколько решений имеет уравнение примеры

В этот раз нам нужно заполнить тремя единицами и двумя нулями пять местоположений. Используя формулу мы можем найти число способов расположения чисел:

Сколько решений имеет уравнение примеры

И опять то же число, что мы получили методом прямого счёта. Мы можем также найти число решений для нерешённого случая, где в правой части уравнения 8 вместо 3. Одним из решений будет:

Сколько решений имеет уравнение примеры

а нам нужно найти число способов разместить 8 единиц в 10 местоположениях, и это будет:

Сколько решений имеет уравнение примеры

как и утверждалось выше.

Если мы уверены в том, что этот метод работает для всех случаев, нам нужна общая формула. Напомним, что общее уравнение имеет вид:

Сколько решений имеет уравнение примеры

Простейшее решение этого уравнения:

Сколько решений имеет уравнение примеры

Поскольку существует n переменных, количество нулей в этом решении равно n-1. Таким образом, разложение выглядит так:

Сколько решений имеет уравнение примеры

В разложенной конфигурации видим m и n-1 нулей (как утверждалось выше).

Следовательно, общее число местоположений, которые нужно заполнить, равно (m+n-1). Единственное, что остаётся — найти число способов, которыми можно заполнить m+n-1 местоположений m единиц, что определяется по формуле:

Видео:Сколько решений имеет уравнение?Скачать

Сколько решений имеет уравнение?

Как понять сколько решений имеет система уравнений графическим способом

Видео:#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Как понять сколько решений имеет система уравнений графическим способом

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Сколько решений имеет уравнение примеры

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Сколько решений имеет уравнение примеры

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Сколько решений имеет уравнение примеры

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Пример 4

Решить графическим способом систему уравнений.

Сколько решений имеет уравнение примерыГрафиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Сколько решений имеет уравнение примерыВыражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Сколько решений имеет уравнение примерыОткрываем новые знания

Решите графическим методом систему уравнений:

Сколько решений имеет уравнение примеры

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Сколько решений имеет уравнение примеры

Построим графики уравнений Сколько решений имеет уравнение примеры

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Сколько решений имеет уравнение примерыПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Сколько решений имеет уравнение примеры

Построим графики уравнений Сколько решений имеет уравнение примеры

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Сколько решений имеет уравнение примерыОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Сколько решений имеет уравнение примеры

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Сколько решений имеет уравнение примеры

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Сколько решений имеет уравнение примеры

Пусть (х; у) — решение системы.

Выразим х из уравнения Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Подставим найденное выражение в первое уравнение:

Сколько решений имеет уравнение примеры

Решим полученное уравнение:

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Сколько решений имеет уравнение примеры

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Сколько решений имеет уравнение примеры

Подставим найденное выражение в первое уравнение системы:

Сколько решений имеет уравнение примеры

После преобразований получим:

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Сколько решений имеет уравнение примеры

Подставим во второе уравнение Сколько решений имеет уравнение примерытогда его можно переписать в виде:

Сколько решений имеет уравнение примеры

Теперь выразим х через у из первого уравнения системы:

Сколько решений имеет уравнение примеры

Подставим в полученное ранее уравнение ху = 2:

Сколько решений имеет уравнение примеры

Корни этого уравнения: Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Сколько решений имеет уравнение примеры

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Сколько решений имеет уравнение примеры.

Корни этого уравнения: Сколько решений имеет уравнение примеры

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Сколько решений имеет уравнение примеры

2) Сколько решений имеет уравнение примеры, получим уравнение Сколько решений имеет уравнение примерыкорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Сколько решений имеет уравнение примеры

Обозначим Сколько решений имеет уравнение примеры

Второе уравнение системы примет вид:

Сколько решений имеет уравнение примеры

Решим полученное уравнение. Получим, умножая обе части на 2а:

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Осталось решить методом подстановки линейные системы:

Сколько решений имеет уравнение примеры

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Сколько решений имеет уравнение примерысм.

Воспользуемся теоремой Пифагора: Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Решим систему. Выразим из первого уравнения у:

Сколько решений имеет уравнение примеры

Подставим во второе уравнение:

Сколько решений имеет уравнение примеры

Корни уравнения: Сколько решений имеет уравнение примеры

Найдём Сколько решений имеет уравнение примеры

С учётом условия Сколько решений имеет уравнение примерыполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Сколько решений имеет уравнение примеры— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Сколько решений имеет уравнение примеры

Вычтем из второго уравнения первое. Получим:

Сколько решений имеет уравнение примеры

Дальше будем решать методом подстановки:

Сколько решений имеет уравнение примеры

Подставим в первое уравнение выражение для у:

Сколько решений имеет уравнение примеры

Корни уравнения: Сколько решений имеет уравнение примеры(не подходит по смыслу задачи).

Найдём у из уравнения:

Сколько решений имеет уравнение примеры

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Сколько решений имеет уравнение примерысимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сколько решений имеет уравнение примеры, то есть не меняется. А вот уравнение Сколько решений имеет уравнение примерыне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Сколько решений имеет уравнение примеры, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Сколько решений имеет уравнение примеры

переставить местами неизвестные х и у, то получим систему:

Сколько решений имеет уравнение примеры

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Сколько решений имеет уравнение примеры

Сначала научитесь выражать через неизвестные Сколько решений имеет уравнение примерывыражения:

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Присылайте задания в любое время дня и ночи в ➔ Сколько решений имеет уравнение примерыСколько решений имеет уравнение примеры

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Сколько корней имеет уравнение?Скачать

Сколько корней имеет уравнение?

Сколько решений имеет уравнение примеры

Сколько решений имеет уравнение примеры

Пример 5. Решите уравнение 3у + у 2 = у.
Решение:
3у + у 2 = у – неполное квадратное уравнение; у 2 + 3у – у = 0;
у 2 + 2у =0; у∙(у + 2) = 0.

Сколько решений имеет уравнение примеры

x 2 – 5х = – 6 или х 2 – 5х = 36;
х 2 – 5х + 6 = 0 или х 2 – 5х – 36 =0.
По теореме Виета:
х1 = 2, х2 = 3, х3 = – 4, х4 =9.
Ответ: – 4, 2, 3, 9.

🔍 Видео

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)

Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать

Система уравнений не имеет решений или имеет бесчисленное множество решений

7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Количество решений системы линейных уравненийСкачать

Количество решений системы линейных уравнений

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Как решить уравнение #россия #сша #америка #уравненияСкачать

Как решить уравнение #россия #сша #америка #уравнения
Поделиться или сохранить к себе: