Сколько различных решений имеет система уравнений
где x1, x2, … x10 — логические переменные?
В ответе не нужно перечислять все различные наборы значений x1, x2, … x10, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Построим дерево решений для первого уравнения.
Получилось три набора переменных, удовлетворяющих этому уравнению. Теперь рассмотрим второе уравнение, оно аналогично первому, следовательно, его дерево решений аналогично первому. Это означает, что значению x2 равному нулю удовлетворяют значения x3, равные 0 и 1, а если x2 равно 1, то только значение 1. Таким образом, системе, состоящей из первого и второго уравнения удовлетворяют 4 набора переменных. Дерево решений для первого и второго уравнений будет выглядеть так:
Применив аналогичные рассуждения к третьему уравнению, получим, что системе, состоящей из первых трёх уравнений удовлетворяет 5 наборов переменных. Так как все уравнения аналогичны, получаем, что системе, данной в условии удовлетворяет 11 наборов переменных.
Видео:Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать
Задача №23. Решение систем логических уравнений.
Решение систем логических уравнений методом замены переменных
Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.
Сколько существует различных наборов значений логических переменных x1, х2, х3, х4, х5, х6, х7, х8, которые удовлетворяют всем перечисленным ниже условиям?
(x1 → х2) → (х3→ х4) = 1
(х3 → х4) → (х5 → х6) = 1
(х5 → х6) → (х7 → х8) = 1
В ответе не нужно перечислять все различные наборы значений переменных x1, х2, х3, х4, х5, х6, х7, х8, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Сделаем замену переменных:
(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.
Тогда можно записать систему в виде одного уравнения:
(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:
Т.е. условия выполняются для 5 наборов y1-y4.
Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.
Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:
Кол-во наборов на x1…x8
Сложим количество наборов: 1 + 3 + 9 + 27 + 81 = 121.
Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?
В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Сделаем замену переменных:
(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9
Систему можно записать в виде одного уравнения:
(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)
Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:
z1 | z2 | z3 | z4 | z5 | z6 | z7 | z8 | z9 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).
Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).
Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.
Решение систем логических уравнений методом визуального определения рекурсии.
Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.
Сколько различных решений имеет система уравнений
где x1, x2, … x10 — логические переменные?
В ответе не нужно перечислять все различные наборы значений x1, x2, … x10, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:
Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.
Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.
Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:
Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.
Решение систем логических уравнений различного типа
Сколько существует различных наборов значений логических переменных x1, . x4, y1. y4, z1. z4, которые удовлетворяют всем перечисленным ниже условиям?
В ответе не нужно перечислять все различные наборы значений переменных x1, . x4, y1, . y4, z1, . z4, при которых выполнена данная система равенств.
В качестве ответа Вам нужно указать количество таких наборов.
Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.
Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):
Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать
Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1
Информатик БУ # 17 января 2016 в 15:45 +1 | |