Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1

Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1

Сколько различных решений имеет система уравнений

где x1, x2, … x10 — логические переменные?

В ответе не нужно перечислять все различные наборы значений x1, x2, … x10, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Построим дерево решений для первого уравнения.

Получилось три набора переменных, удовлетворяющих этому уравнению. Теперь рассмотрим второе уравнение, оно аналогично первому, следовательно, его дерево решений аналогично первому. Это означает, что значению x2 равному нулю удовлетворяют значения x3, равные 0 и 1, а если x2 равно 1, то только значение 1. Таким образом, системе, состоящей из первого и второго уравнения удовлетворяют 4 набора переменных. Дерево решений для первого и второго уравнений будет выглядеть так:

Применив аналогичные рассуждения к третьему уравнению, получим, что системе, состоящей из первых трёх уравнений удовлетворяет 5 наборов переменных. Так как все уравнения аналогичны, получаем, что системе, данной в условии удовлетворяет 11 наборов переменных.

Видео:Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)

Задача №23. Решение систем логических уравнений.

Решение систем логических уравнений методом замены переменных

Метод замены переменных применяется, если некоторые переменные входят в состав уравнений только в виде конкретного выражения, и никак иначе. Тогда это выражение можно обозначить новой переменной.

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

(x1 → х2) → (х3→ х4) = 1

(х3 → х4) → (х5 → х6) = 1

(х5 → х6) → (х7 → х8) = 1

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, х2, х3, х4, х5, х6, х7, х8, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 → х2) = y1; (х3 → х4) = y2; (х5 → х6) = y3; (х7 → х8) = y4.

Тогда можно за­пи­сать си­сте­му в виде од­но­го урав­не­ния:

(y1 → y2) ∧ (y2 → y3) ∧ (y3 → y4) = 1. Конъюнкция равна 1 (истинна), когда каждый операнд принимает значение 1. Т.е. каждая из импликаций должна быть истинна, а это выполняется при всех значениях, кроме (1 → 0). Т.е. в таблице значений переменных y1, y2, y3, y4 единица не должна стоять левее нуля:

Т.е. условия выполняются для 5 наборов y1-y4.

Т.к. y1 = x1 → x2, то значение y1 = 0 достигается на единственном наборе x1, x2: (1, 0), а значение y1 = 1 – на трех наборах x1, x2: (0,0) , (0,1), (1,1). Аналогично для y2, y3, y4.

Поскольку каждый набор (x1,x2) для переменной y1 сочетается с каждым набором (x3,x4) для переменной y2 и т.д., то количества наборов переменных x перемножаются:

Кол-во наборов на x1…x8

Сло­жим ко­ли­че­ство наборов: 1 + 3 + 9 + 27 + 81 = 121.

Сколько существует различных наборов значений логических переменных x1, x2, . x9, y1, y2, . y9, которые удовлетворяют всем перечисленным ниже условиям?

В ответе не нужно перечислять все различные наборы значений переменных x1, x2, . x9, y1, y2, . y9, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.

Сде­ла­ем за­ме­ну пе­ре­мен­ных:

(x1 ≡ y1) = z1, (x2 ≡ y2) = z2,…. ,(x9 ≡ y9) = z9

Систему можно записать в виде одного уравнения:

(¬ z1 ≡ z2) ∧ (¬ z2 ≡ z3) ∧ …..∧ (¬ z8 ≡ z9)

Эквивалентность истинна, только если оба операнда равны. Решениями этого уравнения будут два набора:

z1z2z3z4z5z6z7z8z9
010101010
101010101

Т.к. zi = (xi ≡ yi), то значению zi = 0 соответствуют два набора (xi,yi): (0,1) и (1,0), а значению zi = 1 — два набора (xi,yi): (0,0) и (1,1).

Тогда первому набору z1, z2,…, z9 соответствует 2 9 наборов (x1,y1), (x2,y2),…, (x9,y9).

Столько же соответствует второму набору z1, z2,…, z9. Тогда всего 2 9 +2 9 = 1024 наборов.

Решение систем логических уравнений методом визуального определения рекурсии.

Этот метод применяется, если система уравнений достаточно проста и порядок увеличения количества наборов при добавлении переменных очевиден.

Сколь­ко раз­лич­ных ре­ше­ний имеет си­сте­ма урав­не­ний

где x1, x2, … x10 — ло­ги­че­ские пе­ре­мен­ные?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний x1, x2, … x10, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств. В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Решим первое уравнение. Дизъюнкция равна 1, если хотя бы один из ее операндов равен 1. Т.е. решениями являются наборы:

Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1

Для x1=0 существуют два значения x2 ( 0 и 1), а для x1=1 только одно значение x2 (1), такие, что набор (x1,x2) является решением уравнения. Всего 3 набора.

Добавим переменную x3 и рассмотрим второе уравнение. Оно аналогично первому, значит для x2=0 существуют два значения x3 ( 0 и 1), а для x2=1 только одно значение x3 (1), такие, что набор (x2,x3) является решением уравнения. Всего 4 набора.

Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1

Несложно заметить, что при добавлении очередной переменной добавляется один набор. Т.е. рекурсивная формула количества наборов на (i+1) переменных:

Ni+1 = Ni + 1. Тогда для десяти переменных получим 11 наборов.

Решение систем логических уравнений различного типа

Сколь­ко су­ще­ству­ет раз­лич­ных на­бо­ров зна­че­ний ло­ги­че­ских пе­ре­мен­ных x1, . x4, y1. y4, z1. z4, ко­то­рые удо­вле­тво­ря­ют всем пе­ре­чис­лен­ным ниже усло­ви­ям?

В от­ве­те не нужно пе­ре­чис­лять все раз­лич­ные на­бо­ры зна­че­ний пе­ре­мен­ных x1, . x4, y1, . y4, z1, . z4, при ко­то­рых вы­пол­не­на дан­ная си­сте­ма ра­венств.

В ка­че­стве от­ве­та Вам нужно ука­зать ко­ли­че­ство таких на­бо­ров.

Заметим, что три уравнения системы одинаковы на различных независимых наборах переменных.

Рассмотрим первое уравнение. Конъюнкция истинна (равна 1) только тогда, когда все ее операнды истинны (равны 1). Импликация равна 1 на всех наборах, кроме (1,0). Значит, решением первого уравнения будут такие наборы x1, x2, x3, x4, в которых 1 не стоит левее 0 (5 наборов):

Видео:Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логикаСкачать

Сколько решений имеет лог. уравнение (!(A *B) + C) IMP (!A * !B + D) = 1. Информатика, ЕГЭ, логика

Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1

Сколько различных решений имеет система уравнений

x1 → x2 → x3 = 1
x2 → x3 → x4 = 1
x3 → x4 → x5 = 1
x4 → x5 → x6 = 1

где x1,x2,…,x6 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов

Вроде лёгкая задача, но составив таблицу, что дальше делать. Такое ощущение, что не хватает какой-то маленькой частички, чтобы понять эти задания. Заранее спасибо.

Информатик БУ # 17 января 2016 в 15:45 +1

Расставляем скобки
(x1 → x2) → x3 = 1
(x2 → x3) → x4 = 1
(x3 → x4) → x5 = 1
(x4 → x5) → x6 = 1

Теперь избавляемся от импликации:
¬(¬x1 ˅ x2) ˅ x3 = 1
¬(¬x2 ˅ x3) ˅ x4 = 1
¬(¬x3 ˅ x4) ˅ x5 = 1
¬(¬x4 ˅ x5) ˅ x6 = 1

Раскрываем скобки по закону де Моргана:
x1 ˄ ¬x2 ˅ x3 = 1
x2 ˄ ¬x3 ˅ x4 = 1
x3 ˄ ¬x4 ˅ x5 = 1
x4 ˄ ¬x5 ˅ x6 = 1

Теперь строим таблицу. В цепочках не может быть 010, 000 и 110, так как в этом случае уравнения будут ложны. По этому принципу строим наборы (сначала цепочку без нулей, затем с одним нулём, затем с двумя нулями):

x1 1 0 1 0 1
x2 1 1 0 0 0
x3 1 1 1 1 0
x4 1 1 1 1 1
x5 1 1 1 1 1
x6 1 1 1 1 1

Трех нулей в цепочке быть не может (это видно из таблицы), так как в этом случае получатся комбинации 010, 000 или 110, что даёт ложь.

💥 Видео

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

23 задание Информатика ЕГЭ Система логических уравнений Часть 10Скачать

23 задание Информатика ЕГЭ Система логических уравнений Часть 10

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23Скачать

КАК РЕШАТЬ СИСТЕМЫ ЛОГИЧЕСКИХ УРАВНЕНИЙ. ЕГЭ по информатике. Задание 23

23 Задание ЕГЭ по информатике Досрочный 2018Скачать

23 Задание ЕГЭ по информатике Досрочный 2018

Дигамма-функция. Часть1. Функциональные уравненияСкачать

Дигамма-функция. Часть1. Функциональные уравнения

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Задание 23_Однотипные логические уравнения_ ЕГЭ информатикаСкачать

Задание 23_Однотипные логические уравнения_ ЕГЭ информатика

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Задание 23 - 8. ЕГЭ по информатике.Скачать

Задание 23 - 8. ЕГЭ по информатике.

Задание 23 - 9. ЕГЭ по информатике.Скачать

Задание 23 - 9. ЕГЭ по информатике.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Задание 23 Система не однотипных логических уравнений_ЕГЭ информатикаСкачать

Задание 23 Система не однотипных логических уравнений_ЕГЭ информатика
Поделиться или сохранить к себе:
Сколько различных решений имеет система уравнений x1 x2 1 x2 x3 1