Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Техническая механика

Видео:Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.Скачать

Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.

Плоская система сходящихся сил

Геометрический способ определения равнодействующей плоской системы сходящихся сил

Система сил, линии действия которых лежат в одной плоскости и все пересекаются в одной точке, называется плоской системой сходящихся сил.

Теорема

Плоская система сходящихся сил в общем случае эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих.

Пусть дана плоская система трех сил F1 , F2 и F3 , линии действия которых сходятся в точке А (см. рисунок а) .
Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся силНа основании следствия из аксиом III и IV перенесем эти силы вдоль линий их действия в точку А . Сложив первые две силы F1 и F2 по правилу параллелограмма, получим их равнодействующую R (см. рисунок а) :
R = F1 + F2 .

Пользуясь той же аксиомой параллелограмма, сложим равнодействующую R с силой F3 :

где FΣ – равнодействующая данной системы трех сил.

Аналогичные рассуждения можно провести для любого количества сходящихся сил, в результате чего получим:
FΣ = F1 + F2 + F3 +…+ Fn .
Сокращенно это равенство можно записать так:
FΣ = ΣFi , где i – все целые числа от единицы до n .

Очевидно, что построения, выполненные на рисунке a , можно заменить более простым, как показано на рисунке b . Многоугольник АВСD называют силовым многоугольником. Сторона AD , соединяющая начало первого с концом последнего вектора, называется замыкающей стороной.

Необходимо помнить, что стрелки векторов слагаемых сил образуют определенное направление обхода по контуру силового многоугольника, а замыкающая сторона, определяющая модуль и направление равнодействующей, имеет стрелку, направленную против обхода (см. рисунок b) .

Если определить равнодействующую из силового многоугольника с помощью геометрии и тригонометрии, то такой способ будет называться геометрическим.

Если сделать чертеж силового многоугольника в определенном масштабе, то равнодействующая определится простым измерением замыкающей стороны с последующим умножением на масштаб. Такой способ нахождения равнодействующей называется графическим.

Порядок сложения векторов при построении силового многоугольника на величину равнодействующей не влияет, так как векторная сумма от перемены мест слагаемых не меняется.

Геометрическое условие равновесия плоской системы сходящихся сил

При построении силового многоугольника возможен случай, когда конец последнего вектора совпадает с началом первого. В этом случае замыкающей стороны не будет, и такой силовой многоугольник называется замкнутым.

Очевидно, что равнодействующая FΣ системы сходящихся сил, образующих замкнутый силовой многоугольник, равна нулю, т. е. система сил находится в равновесии. Отсюда вытекает условие, при котором плоская система сходящихся сил будет находиться в равновесии. Это условие выражается равенством:

и формулируется так: для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник был замкнут.

Условия равновесия, записанные в виде равенств, содержащих неизвестные величины, называются уравнениями равновесия.

Применяя геометрическое условие равновесия, удобно решать задачи, в которых на тело действуют три силы, так как в этом случае замкнутый силовой многоугольник представляет собой треугольник.

Решение большинства задач статики проводят в три этапа:
— выбирают тело, равновесие которого будет рассматриваться;
— отбрасывают связи, заменяя их реакциями, и устанавливают, какая система сил действует на тело;
— пользуясь условиями равновесия, находят неизвестные величины.

При решении задач статики следует строго соблюдать правило: размерности и единицы величин всех слагаемых и обеих частей равенства должны быть одинаковыми.

В сомнительных случаях целесообразно использовать это правило для проверки правильности хода решения задач, для чего следует подставить в слагаемые проверяемого равенства единицы всех входящих в них величин и, произведя возможные сокращения, сравнить полученные единицы правой и левой частей.

Пример решения задачи

В качестве примера решения задачи с использованием изложенных выше методов, определим натяжение веревки F и силу давления шара P на стену, если сила тяжести шара равна G .

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Рассмотрим условие равновесия шара. Применив принцип освобождаемости, отбросим связи и заменим их реакциями. Реакция N гладкой стены перпендикулярна стене и проходит через центр шара (так как шар однородный, его геометрический центр совпадает с центром тяжести).
Реакция F веревки направлена вдоль линии натяжения веревки и тоже проходит через центр шара (согласно теореме о равновесии трех непараллельных сил). Применим к системе сил уравнение равновесия:

ΣFi = 0 , или G + N + R = 0.

Строим замкнутый силовой треугольник, начиная с изображения в произвольном масштабе вектора известной силы G (см. рисунок) . Направление обхода треугольника (т. е. направление стрелок) определяется направлением этой силы. Из построенного силового треугольника получим соотношения:

N = G tg α ; R = G/cos α

Искомая сила давления P шара на стену, согласно аксиоме взаимодействия, по модулю равна реакции N стены, но направлена в противоположную сторону.
Натяжение веревки F равно по модулю ее реакции R .

Эту же задачу можно решить, разложив силу тяжести шара G по реальным направлениям (направлениям реакций) на составляющие P (сила давления шара на стену) и F (натяжение веревки) , причем согласно аксиоме взаимодействия:

Из построенного параллелограмма (см. рисунок) легко определить искомые величины.
Такой метод решения задачи называют методом разложения силы.

Проекция силы на оси координат

В тех случаях, когда на тело действует более трех сил, а также когда неизвестны направления некоторых сил, удобнее при решении задач пользоваться не геометрическим, а аналитическим условием равновесия, которое основано на методе проекций сил на оси координат.

Проекцией силы на ось называют отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

На приведенном ниже рисунке видно, что проекции силы P на оси x и y можно определить при помощи тригонометрических функций:
Px = Pcos α, Py = Psin α .

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции — проекция, направленная в положительном направлении оси считается положительной, в противном случае — отрицательной.
Возможны два частных случая:
— если сила перпендикулярна оси, то ее проекция равна нулю (сила проецируется в точку) ;
— если сила параллельна оси, то она проецируется на ось в натуральную величину.

Зная проекции силы на координатные оси, можно определить ее величину (модуль) , используя теорему Пифагора, учитывая, что проекции являются катетами прямоугольного треугольника, а сама сила — гипотенузой.
Направляющий тангенс угла между вектором силы P и осью x можно определить из отношения:
tgα = Py/Px .

Отметим, что силу P можно представить, как равнодействующую двух составляющих сил Px и Py , параллельных осям координат, но эти составляющие не будут являться проекциями силы по определению, поскольку сила (в т. ч. и составляющая силы) есть величина векторная, а проекция — алгебраическая.

Аналитический способ определения равнодействующей плоской системы сил

Пусть дана плоская система сходящихся сил F1, F2, F3, F4. Fn .
Равнодействующая этой системы FΣ = ΣFi .

В плоскости действия данной системы сил выберем ось координат и спроецируем данные силы и их равнодействующую на эту ось. Из математики известно свойство проекции векторной суммы, на основании которого можно утверждать, что проекция равнодействующей на ось равна алгебраической сумме проекций составляющих сил на ту же ось, т. е. FΣx = ΣFix .
Правую часть этого равенства можно представить упрощенно: FΣx = ΣX .

Для того чтобы определить равнодействующую любой плоской системы сходящихся сил, спроецируем их на оси координат x и y , алгебраически сложим проекции всех сил и найдем таким образом проекции равнодействующей:

Зная проекции, определим модуль и направление равнодействующей:
Модуль равнодействующей:

FΣ = √(FΣx 2 + FΣy 2 ) (здесь и далее √ — знак корня);

Направляющий тангенс угла между вектором FΣ и осью x :

Линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил.

Аналитические условия равновесия плоской системы сходящихся сил

Если данная плоская система сходящихся сил находится в равновесии, то равнодействующая такой системы, а значит и проекции равнодействующей на оси координат равны нулю.
Математически это выражение можно записать так:

Учитывая, что FΣx = ΣX; FΣy = ΣY , получаем равенства, выражающие аналитические условия равновесия плоской системы сходящихся сил:

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Формулируется это условие следующим образом: для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы алгебраическая сумма проекций этих сил на каждую из двух координатных осей равнялась нулю.

С помощью уравнений равновесия можно определить два неизвестных элемента данной системы сил, например модуль и направление одной силы или модули двух сил, направления которых известны и т. п.

Выведенные условия равновесия справедливы для любой системы координат, но для упрощения расчетов рекомендуется оси координат по возможности выбирать перпендикулярными неизвестным силам, чтобы каждое уравнение равновесия содержало одно неизвестное.
Когда направление искомой силы неизвестно, ее можно разложить на две составляющие по заданным направлениям, обычно по направлениям координатных осей; по найденным двум составляющим легко определяется неизвестная сила.

Если при решении задач аналитическим способом искомая реакция получается отрицательной, то это означает, что действительное ее направление противоположно направлению, принятому при расчетах.

Видео:Система сходящихся сил. Решение задач по МещерскомуСкачать

Система сходящихся сил. Решение задач по Мещерскому

iSopromat.ru

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Рассмотрим условия равновесия произвольной плоской и пространственной систем сил, включая три основные формы и частные случаи равновесия для систем параллельных и сходящихся сил:

Из основной теоремы статики следует, что любая система сил и моментов, действующих на твердое тело, может быть приведена к выбранному центру и заменена в общем случае главным вектором и главным моментом.

Если система уравновешена, то получаем условия равновесия: R=0, MO=0. Из этих условий для пространственной системы сил получается шесть уравнений равновесия, из которых могут быть определены шесть неизвестных:

Видео:Система сходящихся силСкачать

Система сходящихся сил

Формы условий равновесия

Первая форма

Для плоской системы сил (например, в плоскости Oxy) из этих уравнений получаются только три:

причем оси и точка O, относительно которой пишется уравнение моментов, выбираются произвольно. Это первая форма уравнений равновесия.

Вторая форма

Уравнения равновесия могут быть записаны иначе:

Это вторая форма уравнений равновесия, причем ось Ox не должна быть перпендикулярна линии, проходящей через точки A и B.

Третья форма

Это третья форма уравнений равновесия, причем точки A, B и C не должны лежать на одной прямой.

Предпочтительность написания форм уравнений равновесия зависит от конкретных условий задачи и навыков решающего.

Видео:Задача №1 Система сходящихся силСкачать

Задача №1 Система сходящихся сил

Другие условия равновесия

При действии на тело плоской системы параллельных сил одно из уравнений исчезает и остаются два уравнения (рисунок 1.26, а):

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил
Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил
Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Для пространственной системы параллельных сил (рисунок 1.26, б) могут быть записаны три уравнения равновесия:

Для системы сходящихся сил (линии действия которых пересекаются в одной точке) можно написать три уравнения для пространственной системы:

и два уравнения для плоской системы:

В каждом из вышеприведенных случаев число неизвестных, находимых при решении уравнений, соответствует числу записанных уравнений равновесия.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:Статика. Условия равновесия плоской системы сил (23)Скачать

Статика. Условия равновесия плоской системы сил (23)

ПроСопромат.ру

Видео:1 Решение задачи графическим и аналитическим методомСкачать

1  Решение задачи графическим и аналитическим методом

Технический портал, посвященный Сопромату и истории его создания

Видео:Термех. Статика. Равновесие плоской произвольной системы силСкачать

Термех. Статика. Равновесие плоской произвольной системы сил

Уравнения равновесия системы сходящихся сил

Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Величина равнодействующей при этом равна нулю (R = 0).

Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляю­щих сил на те же оси, т. е.

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Модуль равнодействующей определится по формуле:

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Оба слагаемых, стоящих под знаком корня, во всех случаях положительны как величины, возведенные в ква­драт. Поэтому R = 0 только при выполнении условий:

Сколько независимых уравнений равновесия можно составить для плоской системы сходящихся сил

Таким образом, равнодействующая плоской системы сходящихся сил равна нулю только в том случае, когда алгебраические суммы проекций ее слагаемых на каждую из двух координатных осей равны нулю.

Формулы Σх=0 (сумма проекций всех сил на ось Х равна нулю), Σy=0 (сумма проекций всех сил на ось Y равна нулю) называют уравнениями равновесия плоской системы сходящихся сил и используют при аналитическом решении задач.

Следовательно, для решения задач на равновесие плоской системы сходящихся сил мы имеем два уравне­ния. Эти уравнения позволяют определить две неизвест­ные величины.

Если же задача содержит неизвестные в количестве, превышающем число уравнений равнове­сия, то эту задачу нельзя решить методами статики абсо­лютно твердого тела. Задачи подобного типа называют статически неопределимыми. Их решение возможно только при отказе от допущения об абсолютной твердости тел; помимо уравнений равновесия для решения их составляют дополнительные уравнения, основанные на рассмотрении деформаций тел. Методы решения таких задач рассматриваются в курсе сопротивления материалов.

💥 Видео

Произвольная плоская система сил. Задача 1Скачать

Произвольная плоская система сил. Задача 1

"Плоская система сходящихся сил. Определение равнодействующей аналитическим способом".Скачать

"Плоская система сходящихся сил. Определение равнодействующей аналитическим способом".

4.1 Плоская система сил. Графическое условие равновесия (решение задач)Скачать

4.1 Плоская система сил. Графическое условие равновесия (решение задач)

2.4. Равновесие произвольной плоской системы сил (1 из 4)Скачать

2.4. Равновесие произвольной плоской системы сил (1 из 4)

Плоская сходящаяся система силСкачать

Плоская сходящаяся система сил

Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1Скачать

Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1

Геометрический способ определения равнодействующей силыСкачать

Геометрический способ определения равнодействующей силы

3.2. Равновесие статически определимой системы тел под действием плоской системы сил (1 из 3)Скачать

3.2. Равновесие статически определимой системы тел под действием плоской системы сил (1 из 3)

Равновесие системы телСкачать

Равновесие системы тел

3.1. Статическая определимость системы тел под действием плоской системы силСкачать

3.1. Статическая определимость системы тел под действием плоской системы сил

Графический способ определения равнодействующейСкачать

Графический способ определения равнодействующей

Определение реакций опор в балке. Сопромат.Скачать

Определение реакций опор в балке. Сопромат.

Пространственная система силСкачать

Пространственная система сил
Поделиться или сохранить к себе: