- Показательное уравнение – это уравнение c переменной в показателе степени.
- Как решать показательные уравнения
- При решении любое показательное уравнение мы стремимся привести к виду (a^=a^), а затем сделать переход к равенству показателей, то есть:
- Показательные уравнения, не имеющие решений
- Положительное число в любой степени останется положительным числом.
- Показательные уравнения с разными основаниями
- Как решать показательные уравнения?
- Простейшие показательные уравнения
- Общий метод решения показательных уравнений
- Решение показательных уравнений при помощи замены
- Показательные уравнения
- Определение показательного уравнения
- Свойства степеней
- 💥 Видео
Показательное уравнение – это уравнение c переменной в показателе степени.
Видео:10 класс. Алгебра. Показательные уравнения с корнями.Скачать
Как решать показательные уравнения
При решении любое показательное уравнение мы стремимся привести к виду (a^=a^), а затем сделать переход к равенству показателей, то есть:
Важно! Из той же логики следуют два требования для такого перехода:
— число в основании степени слева и справа должно быть одинаковым;
— степени слева и справа должны быть «чистыми», то есть не должно быть никаких коэффициентов , умножений, делений и т.д.
В этом показательном уравнении переход к (x+2= 8-x) невозможен, так как в основаниях разные числа
Здесь переход к (x+3x=2x) также невозможен, так как слева стоит сумма.
И в этом случае перейти к (5-x=7x) нельзя, ведь справа есть минус.
Мы знаем, что (27 = 3^3). С учетом этого преобразуем уравнение.
Теперь вспомним, что: (a^=frac). Эту формулу можно использовать и в обратную сторону: (frac =a^). Тогда (frac=frac =3^).
Применив свойство ((a^b )^c=a^) к правой части, получим: ((3^ )^=3^=3^).
И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.
Решаем получившееся линейное уравнение и пишем ответ.
Воспользуемся свойством степени (a^b cdot a^c=a^) в обратном направлении.
(2^x cdot 2^3+2^x cdot 2^2-2^x cdot 2^1=160)
Теперь в левой части выносим за скобку общий множитель (2^x) …
…и вычисляем содержимое в скобке.
Делим на (10) обе части уравнения…
…и дорешиваем до ответа.
Иногда одних только свойств степеней оказывается недостаточно, и приходиться применять стандартные приемы для решения более сложных уравнений – замену переменной , расщепление уравнения и т.д.
Вновь пользуемся свойством степени (a^b cdot a^c=a^) в обратном направлении.
Теперь вспоминаем, что (4=2^2).
Смотрим внимательно на уравнение, и видим, что тут напрашивается замена (t=2^x).
Однако мы нашли значения (t), а нам нужны (x). Возвращаемся к иксам, делая обратную замену.
Преобразовываем второе уравнение, используя свойство отрицательной степени…
…и дорешиваем до ответа.
Остается вопрос — как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.
Видео:11 класс, 12 урок, Показательные уравненияСкачать
Показательные уравнения, не имеющие решений
Разберем еще две ситуации, которые часто ставят в тупик учеников:
— положительное число в степени равно нулю, например, (2^x=0);
— положительное число в степени равно отрицательному числу, например, (2^x=-4).
Давайте попробуем решить перебором. Если икс — положительное число, то с ростом икса вся степень (2^x) будет только расти:
И так далее. Очевидно, что дальше увеличивать икс нет смысла, будет только «хуже» (т.е. мы будем удаляться от нуля и минус четверки).
Может быть нам поможет (x=0)? Проверяем:
Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство (a^=frac), проверяем:
Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:
Положительное число в любой степени останется положительным числом.
Таким образом, оба уравнения выше не имеют решений.
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Показательные уравнения с разными основаниями
В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: (a^=b^), где (a) и (b) – положительные числа.
Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на (b^). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:
Дальше решаем с помощью свойств степени.
Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования логарифмов ). А значит мы не можем прийти к виду (a^=a^). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на (3^) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).
Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: (a^0=1), иначе говоря: «любое число в нулевой степени равно (1)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.
Вуаля! Избавляемся от оснований.
Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.
Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна (frac)), так еще и показатели разные… Однако давайте в показателе левой степени вынесем за скобку двойку.
Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.
Видео:Показательные уравнения. 11 класс.Скачать
Как решать
показательные уравнения?
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.
Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Видео:Решить уравнение. Показательное уравнение с корнямиСкачать
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь посложнее.
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
Мы применили свойство отрицательной степени по формуле:
Теперь наше уравнение будет выглядеть так:
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
Поздравляю, мы нашли корень нашего показательного уравнения.
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
Воспользуемся одним из свойств степеней ((a^n)^m=a^):
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
И еще один пример:
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Видео:Как решать Показательные Уравнения? (часть 2)Скачать
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
Где (a,b) какие-то положительные числа. ((a>0, ; b>0).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
Раз основания одинаковые, то мы можем просто приравнять степени:
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6 $$5^=125 Rightarrow 5^=5*5*5 Rightarrow 5^=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^=81 Rightarrow (3*3)^=3*3*3*3 Rightarrow(3^2)^=3^4 Rightarrow 3^=3^4 Rightarrow 8x=4 Rightarrow x=frac.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
Подставим данное преобразование в наш пример:
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Видео:10 класс. Алгебра. Системы показательных уравнений.Скачать
Решение показательных уравнений при помощи замены
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
Квадратное уравнение, которое решается через дискриминант:
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
И второй корень:
И еще один пример на замену:
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
Подставим в исходное уравнение:
Теперь показательные функции одинаковы и можно сделать замену:
Обратная замена, и наше уравнение сводится к простейшему:
И второе значение (t):
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
Здесь нам придется воспользоваться свойствами степеней:
Разберем каждое слагаемое:
Теперь подставим получившееся преобразования в исходное уравнение:
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac)^x):
Сделаем обратную замену:
И последний пример на замену:
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
Разберем каждое слагаемое нашего уравнения:
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!
И последнее слагаемое со степенью:
Подставим все наши преобразования в исходное уравнение:
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
Воспользуемся формулой ((a*b)^n=a^n*b^n):
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!
Видео:ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать
Показательные уравнения
О чем эта статья:
6 класс, 7 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Сложные показательные уравнения: примеры и способы решенияСкачать
Определение показательного уравнения
Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.
Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:
Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.
С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a
Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.
Свойства степеней
Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.
💥 Видео
10 класс. Алгебра. Показательные уравнения. 5.0.Скачать
Сложное показательное уравнение с арифметическим корнем в основанииСкачать
10 класс. Алгебра. Показательные уравнения.Скачать
10 класс. Алгебра. Решение показательных уравнений.Скачать
10 класс, показательное уравнениеСкачать
ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать
Методы решения показательных уравнений. Урок №25.Скачать
10 класс. Алгебра. Показательные уравненияСкачать
Имба не контрится Показательное показательное уравнениеСкачать
«Показательное уравнение» #умскул #умскул_профильнаяматематика #аделияадамоваСкачать
10 класс. Алгебра. Показательные уравнения.Скачать