- Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac ) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной). Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе. Пример не дробно-рациональных уравнений: Как решаются дробно-рациональные уравнения? Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным. Алгоритм решения дробно-рационального уравнения: Выпишите и «решите» ОДЗ. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут. Запишите уравнение, не раскрывая скобок. Решите полученное уравнение. Проверьте найденные корни с ОДЗ. Запишите в ответ корни, которые прошли проверку в п.7. Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам. Пример. Решите дробно-рациональное уравнение (frac — frac=frac) Сначала записываем и «решаем» ОДЗ. По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)). Сокращаем то, что можно и записываем получившееся уравнение. Приводим подобные слагаемые Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй. Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0) Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)). Благо (x_1) и (x_2) мы уже нашли. Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение. Приводим подобные слагаемые Находим корни уравнения Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. Дробно-рациональные уравнения Что такое дробно-рациональные уравнения Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 9 x 2 — 1 3 x = 0 1 2 x + x x + 1 = 1 2 6 x + 1 = x 2 — 5 x x + 1 Уравнения, которые не являются дробно-рациональными: Как решаются дробно-рациональные уравнения В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Выписать и определить ОДЗ. Найти общий знаменатель для дробей. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели. Записать уравнение со скобками. Раскрыть скобки для приведения подобных слагаемых. Найти корни полученного уравнения. Выполним проверку корней в соответствии с ОДЗ. Записать ответ. Пример 1 Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: x x — 2 — 7 x + 2 = 8 x 2 — 4 Начать следует с области допустимых значений: x 2 — 4 ≠ 0 ⇔ x ≠ ± 2 Воспользуемся правилом сокращенного умножения: x 2 — 4 = ( x — 2 ) ( x + 2 ) В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: x x — 2 — 7 x + 2 = 8 x 2 — 4 x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 ) После сокращения избавимся от скобок и приведем подобные слагаемые: x ( x + 2 ) — 7 ( x — 2 ) = 8 x 2 + 2 x — 7 x + 14 = 8 Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Примеры задач с ответами для 9 класса Требуется решить дробно-рациональное уравнение: x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 Определим область допустимых значений: О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2 x 2 + 7 x + 10 ≠ 0 D = 49 — 4 · 10 = 9 x 1 ≠ — 7 + 3 2 = — 2 x 2 ≠ — 7 — 3 2 = — 5 Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение: x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Сократим дроби, избавимся от скобок, приведем подобные слагаемые: x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0 x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0 x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0 2 x 2 + 9 x — 5 = 0 Потребуется решить квадратное уравнение: 2 x 2 + 9 x — 5 = 0 Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: 4 x — 2 — 3 x + 4 = 1 В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: 4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0 4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0 4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0 x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0 Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0 Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: ( x — 2 ) ( x + 4 ) ≠ 0 Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: — x 2 — x + 30 = 0 _ _ _ · ( — 1 ) Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: x + 2 x 2 — 2 x — x x — 2 = 3 x На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0 x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0 x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0 — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0 Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 ) Корни квадратного уравнения: x 1 = — 4 ; x 2 = 2 Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: x 2 — x — 6 x — 3 = x + 2 Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0 x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0 x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0 0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0 Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: 5 x — 2 — 3 x + 2 = 20 x 2 — 4 На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: 5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0 5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0 5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0 2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0 ( x — 2 ) ( x + 2 ) ≠ 0 Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) Начнем с определения ОДЗ: — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0 При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 ) ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 ) ( x — 3 ) x + x = x + 5 Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0 Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета: x 1 · x 2 = — 10 x 1 + x 2 = 3 В этом случае подходящими являются числа: -2 и 5. Второе значение не соответствует области допустимых значений. Дробно рациональные уравнения Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x . Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 . Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает. ОДЗ – область допустимых значений переменной. В выражении вида f ( x ) g ( x ) = 0 ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю). Алгоритм решения дробно рационального уравнения: Привести выражение к виду f ( x ) g ( x ) = 0 . Выписать ОДЗ: g ( x ) ≠ 0. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ. Пример решения дробного рационального уравнения: Решить дробно рациональное уравнение x 2 − 4 2 − x = 1. Решение: Будем действовать в соответствии с алгоритмом. Привести выражение к виду f ( x ) g ( x ) = 0 . Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю: x 2 − 4 2 − x − 1 2 − x = 0 x 2 − 4 2 − x − 2 − x 2 − x = 0 x 2 − 4 − ( 2 − x ) 2 − x = 0 x 2 − 4 − 2 + x 2 − x = 0 x 2 + x − 6 2 − x = 0 Первый шаг алгоритма выполнен успешно. Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2 Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни: x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант. a = 1, b = 1, c = − 6 D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25 D > 0 – будет два различных корня. x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3 Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ. Корни, полученные на предыдущем шаге: Значит, в ответ идет только один корень, x = − 3. Задания для самостоятельного решения №1. Решите уравнение: 3 x − 19 = 19 x − 3 . Если корней несколько, запишите их через точку с запятой в порядке возрастания. Решение: 3 x − 19 = 19 x − 3 [ x − 19 ≠ 0 x − 3 ≠ 0 ⇒ [ x ≠ 19 x ≠ 3 Приводим обе дроби к общему знаменателю, записываем дополнительные множители к числителям: 3 ( x − 3 ) x − 19 − 19 ( x − 19 ) x − 3 = 0 3 ( x − 3 ) − 19 ( x − 19 ) ( x − 19 ) ( x − 3 ) = 0 В соответствии с алгоритмом, приравниваем числитель к нулю: 3 x − 9 − 19 x + 361 = 0 x = − 352 − 16 = − 352 16 = 22 Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ. №2. Решите уравнение x − 4 x − 6 = 2. Решение: Можно решать эту задачу способом, который использовался при решении задачи №8. Но сейчас мы используем еще один способ решения таких уравнений. Представим число 2 в виде дроби со знаменателем 1 . Воспользуемся основным свойством пропорции : произведение крайних членов равно произведению средних (правило «креста»): a b = c d ⇒ a ⋅ d = b ⋅ c x − 4 x − 6 = 2 1 ⇒ ( x − 4 ) ⋅ 1 = ( x − 6 ) ⋅ 2 Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.
- Как решаются дробно-рациональные уравнения?
- Дробно-рациональные уравнения
- Что такое дробно-рациональные уравнения
- Как решаются дробно-рациональные уравнения
- Примеры задач с ответами для 9 класса
- Дробно рациональные уравнения
- Задания для самостоятельного решения
- 🌟 Видео
Дробно-рациональные уравнения – уравнения, которые можно свести к виду (frac
Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе. Пример не дробно-рациональных уравнений: Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным. Алгоритм решения дробно-рационального уравнения: Выпишите и «решите» ОДЗ. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут. Запишите уравнение, не раскрывая скобок. Решите полученное уравнение. Проверьте найденные корни с ОДЗ. Запишите в ответ корни, которые прошли проверку в п.7. Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам. Пример. Решите дробно-рациональное уравнение (frac — frac=frac) Сначала записываем и «решаем» ОДЗ. По формуле сокращенного умножения : (x^2-4=(x-2)(x+2)). Значит, общий знаменатель дробей будет ((x-2)(x+2)). Умножаем каждый член уравнения на ((x-2)(x+2)). Сокращаем то, что можно и записываем получившееся уравнение. Приводим подобные слагаемые Согласуем корни с ОДЗ. Замечаем, что по ОДЗ (x≠2). Значит первый корень — посторонний. В ответ записываем только второй. Пример. Найдите корни дробно-рационального уравнения (frac + frac-frac) (=0) Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен (x^2+7x+10) на множители по формуле: (ax^2+bx+c=a(x-x_1)(x-x_2)). Очевидно, общий знаменатель дробей: ((x+2)(x+5)). Умножаем на него всё уравнение. Приводим подобные слагаемые Находим корни уравнения Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. Видео:Дробно-рациональные уравнения. 8 класс.Скачать Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 9 x 2 — 1 3 x = 0 1 2 x + x x + 1 = 1 2 6 x + 1 = x 2 — 5 x x + 1 Уравнения, которые не являются дробно-рациональными: Видео:Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Пример 1 Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: x x — 2 — 7 x + 2 = 8 x 2 — 4 Начать следует с области допустимых значений: x 2 — 4 ≠ 0 ⇔ x ≠ ± 2 Воспользуемся правилом сокращенного умножения: x 2 — 4 = ( x — 2 ) ( x + 2 ) В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: x x — 2 — 7 x + 2 = 8 x 2 — 4 x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 ) После сокращения избавимся от скобок и приведем подобные слагаемые: x ( x + 2 ) — 7 ( x — 2 ) = 8 x 2 + 2 x — 7 x + 14 = 8 Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Видео:ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать Требуется решить дробно-рациональное уравнение: x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 Определим область допустимых значений: О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2 x 2 + 7 x + 10 ≠ 0 D = 49 — 4 · 10 = 9 x 1 ≠ — 7 + 3 2 = — 2 x 2 ≠ — 7 — 3 2 = — 5 Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение: x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Сократим дроби, избавимся от скобок, приведем подобные слагаемые: x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0 x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0 x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0 2 x 2 + 9 x — 5 = 0 Потребуется решить квадратное уравнение: 2 x 2 + 9 x — 5 = 0 Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: 4 x — 2 — 3 x + 4 = 1 В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: 4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0 4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0 4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0 x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0 Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0 Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: ( x — 2 ) ( x + 4 ) ≠ 0 Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: — x 2 — x + 30 = 0 _ _ _ · ( — 1 ) Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: x + 2 x 2 — 2 x — x x — 2 = 3 x На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0 x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0 x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0 — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0 Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 ) Корни квадратного уравнения: x 1 = — 4 ; x 2 = 2 Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: x 2 — x — 6 x — 3 = x + 2 Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0 x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0 x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0 0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0 Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: 5 x — 2 — 3 x + 2 = 20 x 2 — 4 На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: 5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0 5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0 5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0 2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0 ( x — 2 ) ( x + 2 ) ≠ 0 Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) Начнем с определения ОДЗ: — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0 При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 ) ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 ) ( x — 3 ) x + x = x + 5 Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0 Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета: x 1 · x 2 = — 10 x 1 + x 2 = 3 В этом случае подходящими являются числа: -2 и 5. Второе значение не соответствует области допустимых значений. Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x . Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 . Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает. ОДЗ – область допустимых значений переменной. В выражении вида f ( x ) g ( x ) = 0 ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю). Алгоритм решения дробно рационального уравнения: Пример решения дробного рационального уравнения: Решить дробно рациональное уравнение x 2 − 4 2 − x = 1. Решение: Будем действовать в соответствии с алгоритмом. Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю: x 2 − 4 2 − x − 1 2 − x = 0 x 2 − 4 2 − x − 2 − x 2 − x = 0 x 2 − 4 − ( 2 − x ) 2 − x = 0 x 2 − 4 − 2 + x 2 − x = 0 x 2 + x − 6 2 − x = 0 Первый шаг алгоритма выполнен успешно. Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2 x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант. a = 1, b = 1, c = − 6 D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25 D > 0 – будет два различных корня. x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3 Корни, полученные на предыдущем шаге: Значит, в ответ идет только один корень, x = − 3. Видео:Дробно- рациональные уравненияСкачать №1. Решите уравнение: 3 x − 19 = 19 x − 3 . Если корней несколько, запишите их через точку с запятой в порядке возрастания. Решение: 3 x − 19 = 19 x − 3 [ x − 19 ≠ 0 x − 3 ≠ 0 ⇒ [ x ≠ 19 x ≠ 3 Приводим обе дроби к общему знаменателю, записываем дополнительные множители к числителям: 3 ( x − 3 ) x − 19 − 19 ( x − 19 ) x − 3 = 0 3 ( x − 3 ) − 19 ( x − 19 ) ( x − 19 ) ( x − 3 ) = 0 В соответствии с алгоритмом, приравниваем числитель к нулю: 3 x − 9 − 19 x + 361 = 0 x = − 352 − 16 = − 352 16 = 22 Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ. №2. Решите уравнение x − 4 x − 6 = 2. Решение: Можно решать эту задачу способом, который использовался при решении задачи №8. Но сейчас мы используем еще один способ решения таких уравнений. Представим число 2 в виде дроби со знаменателем 1 . Воспользуемся основным свойством пропорции : произведение крайних членов равно произведению средних (правило «креста»): a b = c d ⇒ a ⋅ d = b ⋅ c x − 4 x − 6 = 2 1 ⇒ ( x − 4 ) ⋅ 1 = ( x − 6 ) ⋅ 2 Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ. Дробно рациональные уравнения. Алгебра, 9 классСкачать Как решать уравнения с дробью? #shortsСкачать Решение дробных рациональных уравнений. Алгебра, 8 классСкачать Дробно-рациональные уравнения. Подготовка к экзаменам. 64 часть. 9 класс.Скачать Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать Решение дробно рациональных уравнений. Алгебра 8 класс. Часть 1.Скачать Алгебра 9 класс (Урок№17 - Дробные рациональные уравнения.)Скачать Задание 21 Дробно рациональное уравнениеСкачать РАЗБИРАЕМ ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ II #shorts #математика #егэ #огэ #профильныйегэСкачать Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать СЛОЖИТЕ ДВА КОРНЯСкачать ЕГЭ профиль (дробно-рациональное уравнение)Скачать #136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать) (=0), где (P(x)) и (Q(x)) — выражения с иксом (или другой переменной).
Как решаются дробно-рациональные уравнения?
Благо (x_1) и (x_2) мы уже нашли.Дробно-рациональные уравнения
Что такое дробно-рациональные уравнения
Как решаются дробно-рациональные уравнения
Примеры задач с ответами для 9 класса
Дробно рациональные уравнения
Задания для самостоятельного решения
🌟 Видео