Сколько действительных корней имеет уравнение 2×4 3×3 12×2 12x 0

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. begin f(x)=ax^3+bx^2+cx+d\ f'(x)=3ax^2+bx+c end Если в уравнении (f'(x)=0) дискриминант (D=4b^2-12ac=4(b^2-3ac)gt 0), кубическая парабола имеет две точки экстремума: (x_=frac<-2bpmsqrt>). Если при этом значения функции в точках экстремума (f(x_1)cdot f(x_2)lt 0), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но (f(x_1)cdot f(x_2)=0), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) (x^3+3x^2-4=0)
(b^2-3ac=9gt 0 (c=0) )
(f(x)=x^3+3x^2-4 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=-4, f(x_2)=0 )
(f(x_1)cdot f(x_2)=0Rightarrow) два корня
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0
2) (x^3+3x^2-1=0)
(b^2-3ac=9gt 0 )
(f(x)=x^3+3x^2-1 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=-1, f(x_2)=3 )
(f(x_1)cdot f(x_2)lt 0Rightarrow) три корня
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0
3) (x^3+3x^2+1=0)
(b^2-3ac=9gt 0)
(f(x)=x^3+3x^2+1 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=1, f(x_2)=5 )
(f(x_1)cdot f(x_2)gt 0Rightarrow) один корень
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0
4) (x^3+x^2+x+3=0)
(b^2-3ac=1-3lt 0 )
Один корень
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения (frac 1x+frac+frac)
б) Найдите число корней уравнения (frac 1x+frac+frac=k)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью (y=1). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=frac1x+frac+frac $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: (xneleft)
Все три точки – точки разрыва 2-го рода. begin lim_left(frac1x+frac+fracright)=-infty-1-frac13=-infty\ lim_left(frac1x+frac+fracright)=+infty-1-frac13=+infty\ lim_left(frac1x+frac+fracright)=1-infty-frac12=-infty\ lim_left(frac1x+frac+fracright)=1+infty-frac12=+infty\ lim_left(frac1x+frac+fracright)=frac13+frac12-infty=-infty\ lim_left(frac1x+frac+fracright)=frac13+frac12+infty=+infty end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные (x=0, x=1, x=3) – точки разрыва 2-го рода
2. Горизонтальные: begin lim_left(frac1x+frac+fracright)=-0-0-0=-0\ lim_left(frac1x+frac+fracright)=+0+0+0=+0\ end Горизонтальная асимптота (y=0)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: (k=0), нет.
4) Первая производная $$ f'(x)=-frac-frac-fraclt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. (x=0) – асимптота
Точки пересечения с OX – две, (0lt x_1lt 1,1lt x_2lt 3)

7) График
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0
Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь (y=k) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При (klt 0) — три корня
При (k=0) — два корня
При (kgt 0) — три корня

Ответ: а) 3 корня; б) при (k=0) два корня, при (kne 0) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ sqrt+sqrt=a $$ имеет по крайней мере одно решение.

Исследуем функцию (f(x)=sqrt+sqrt)
ОДЗ: ( begin x-1geq 0\ 10-2xgeq 0 end Rightarrow begin xgeq 1\ xleq 5 end Rightarrow 1leq xleq 5 )
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: (f(1)=0+sqrt=2sqrt, f(5)=sqrt+0=2)
Первая производная: begin f'(x)=frac<2sqrt>+frac<2sqrt>=frac<2sqrt>-frac<sqrt>\ f'(x)=0 text 2sqrt=sqrtRightarrow 4(x-1)=10-2xRightarrow 6x=14Rightarrow x=frac73\ fleft(frac73right)=sqrt+sqrt=sqrt+sqrt<frac>=frac<sqrt>=2sqrt end Промежутки монотонности:

(x)1(1; 7/3)7/3(7/3; 5)5
(f'(x))+0
(f(x))(2sqrt)(nearrow )max
(2sqrt)
(searrow )2

Можем строить график:
Сколько действительных корней имеет уравнение 2x4 3x3 12x2 12x 0
(y=a) — горизонтальная прямая.
Количество точек пересечения (f(x)) и (y) равно количеству решений.
Получаем:

$$ alt 2 $$нет решений
$$ 2leq alt 2sqrt $$1 решение
$$ 2sqrtleq alt 2sqrt $$2 решения
$$ a=2sqrt $$1 решение
$$ agt 2sqrt $$нет решений

По крайней мере одно решение будет в интервале (2leq aleq 2sqrt).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство (fracgt frac)

Разобьем неравенство на совокупность двух систем.
Если (xgt 1), то (x-1gt 0), на него можно умножить слева и справа и не менять знак.
Если (xlt 1), то (x-1lt 0), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: (xgt 0)

Получаем совокупность: begin left[ begin begin xgt 1\ 2+log_3 xgtfrac end \ begin 0lt xlt 1\ 2+log_3 xltfrac end end right. \ 2+log_3 xgt fracRightarrow log_3 xgt fracRightarrow log_3 xgt frac\ left[ begin begin xgt 1\ log_3 xgtfrac end \ begin 0lt xlt 1\ log_3 xltfrac end end right. end Исследуем функцию (f(x)=frac=frac=1-frac)
Точка разрыва: (x=frac12) – вертикальная асимптота
Односторонние пределы: begin lim_left(1-fracright)=1-frac=+infty\ lim_left(1-fracright)=1-frac=-infty end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: (y=1) begin lim_left(1-fracright)=1-frac=1+0\ lim_left(1-fracright)=1-frac=1-0 end На минус бесконечности кривая стремится к (y=1) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=left(1-fracright)’=fracgt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-frac $$ Одна критическая точка 2-го порядка (x=frac12)

Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Калькулятор Уравнений. Решение Уравнений Онлайн

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:9)Решить уравнение х^2+х-12=0.Если уравнение имеет более одного корня, в ответ запишите больший кореСкачать

9)Решить уравнение х^2+х-12=0.Если уравнение имеет более одного корня, в ответ запишите больший коре

3x²-12x+12=0 (3 умножить на x в квадрате минус 12 умножить на x плюс 12 равно 0) решить через дискриминант и по теореме Виета, найти корни.

Видео:Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествахСкачать

Как решить такое уравнение ➜ c³+c²=2 ➜ Решаем на разных множествах

Калькулятор квадратных уравнений

Введите данные:

Округление:

Уравнение:

(a * x^ + b * x + c) = (3 * x^ — 12 * x + 12) = 0

Дискриминант:

(D = b^ — 4 * a * c) = ((-12)^ — 4 * 3 * 12) = (144 — 144) = 0

Корни квадратного уравнения:

Видео:Уравнение x^2+px+q=0 имеет корни -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

Уравнение x^2+px+q=0 имеет корни  -6; 4. Найдите q. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

Решение по теореме Виета

Преобразование в приведённый вид

Преобразуем квадратное уравнение в приведенное (разделим все части нашего уравнения на коэффициент a):
(fracx^+frac*x+frac) = (x^+frac*x+frac) = (x^ -4 * x + 4)

Итого, имеем приведенное уравнение:
(x^ -4 * x + 4 = 0)

Теорема Виета выглядит следующим образом:
(x_*x_=c)
(x_+x_=-b)

Мы получаем следующую систему уравнений:
(x_*x_=4)
(x_+x_=4)

Методом подбора получаем:
(x_ = x_ = 2)

Видео:УРАВНЕНИЕ х²=а корни уравненияСкачать

УРАВНЕНИЕ х²=а корни уравнения

Разложение на множители

Разложение происходит по формуле:
(a*(x-x_)*(x-x_) = 0)

То есть у нас получается:
(3*(x-2)*(x-2) = 0)

📽️ Видео

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭСкачать

№2 Линейное уравнение 2+3х=-2х-13 Как решать простое уравнение Решите уравнение 5кл 6кл 7кл ОГЭ ЕГЭ

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Как решать такие уравнения 2^x+4^x+8^x=39Скачать

Как решать такие уравнения 2^x+4^x+8^x=39

9)Решите уравнение х^2-7х+12=0. Если уравнение имеет более одного корня, в ответе запишите большийСкачать

9)Решите уравнение х^2-7х+12=0. Если уравнение имеет более одного корня, в ответе запишите больший

При каких значениях параметра уравнение имеет единственный кореньСкачать

При каких значениях параметра уравнение имеет единственный корень

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

Решите уравнение x^2+3x=54. | ОГЭ 2017 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

Целое уравнение и его корни | Алгебра 9 класс #12 | ИнфоурокСкачать

Целое уравнение и его корни | Алгебра 9 класс #12 | Инфоурок

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙ

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)Скачать

Сколько решений имеет логическое уравнение: (A импликация В) ИЛИ (C импликация D). ЕГЭ(информатика)

Как решать задачи на целую и дробную части числа ➜ Уравнение от ВМК МГУ ➜ {2}=xСкачать

Как решать задачи на целую и дробную части числа ➜ Уравнение от ВМК МГУ ➜ {2}=x

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭСкачать

№5 Линейное уравнение 2-3(2х+2)=5-4х Простое уравнение со скобками 6кл 7кл 8кл 9кл 11кл ОГЭ ЕГЭ

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»
Поделиться или сохранить к себе: