Системы уравнений на егэ математика профиль

Системы алгебраических уравнений

Систему уравнений можно решать методом подстановки – выражать переменную из одного уравнения и подставлять в другое.

Уравнения в системе можно также складывать друг с другом и вычитать одно из другого. Например, левую часть одного уравнения складываем с левой частью другого, правую – с правой.

Можно умножать и даже делить одно уравнение на другое! Конечно, при этом надо следить, чтобы не умножить или не поделить на ноль.

Обратите внимание – когда мы решаем систему уравнений, она не распадается на «кусочки», на отдельные уравнения. Каждый раз мы переходим от системы уравнений к равносильной ей системе.

1. Решите систему уравнений:

Раскроем скобки в каждом уравнении:

Вычтем из первого уравнения системы второе: . И подставим во второе уравнение.

2. Решите систему уравнений:

Мы разложили левую часть первого уравнения на множители по формуле суммы кубов.

Поделим первое уравнение системы на второе

Подставим в уравнение

3. Решите систему уравнений:

Дальше – цепочка равносильных переходов.

Решения первой системы:

Решим квадратное уравнение . Его корни:
и .

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Это полезно

Узнаете, чем отличаются официально-деловой, публицистический, научный, художественный и разговорный стили.

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Параметрические уравнения, неравенства и системы, часть С

Видео:✓ Система уравнений с параметром | ЕГЭ-2018. Задание 17. Математика. Профиль | Борис ТрушинСкачать

✓ Система уравнений с параметром | ЕГЭ-2018. Задание 17. Математика. Профиль | Борис Трушин

Теория к заданию 18 из ЕГЭ по математике (профильной)

Видео:✓ Система уравнений с параметром | ЕГЭ-2016. Задание 17. Математика. Профиль | Борис ТрушинСкачать

✓ Система уравнений с параметром | ЕГЭ-2016. Задание 17. Математика. Профиль | Борис Трушин

Параметрические уравнения

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.

Способ решения параметрических уравнений

  1. Находим область определения уравнения.
  2. Выражаем a как функцию от $х$.
  3. В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
  4. Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
  5. Записываем ответ.

Общий вид уравнения с одним параметром таков:

При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.

Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

2. Подкоренное выражение должно быть неотрицательным.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$

Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D 0$;

Квадратное уравнение имеет один корень, если $D=0$

Тригонометрические тождества

3. $sin^α+cos^α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

Видео:15 минут и Ты Перестанешь Бояться ПАРАМЕТРОВ на ЕГЭ!Скачать

15 минут и Ты Перестанешь Бояться ПАРАМЕТРОВ на ЕГЭ!

ЕГЭ 2020, математика, уравнения и системы уравнений, задача 13 (профильный уровень), Ященко И.В., Шестаков С.А., Захаров П.И., 2020

ЕГЭ 2020, математика, уравнения и системы уравнений, задача 13 (профильный уровень), Ященко И.В., Шестаков С.А., Захаров П.И., 2020.

Пособия по математике серии «ЕГЭ 2020. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче Единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 13 профильного уровня. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по теме «Уравнения и системы уравнений». Пособие предназначено для учащихся старшей школы и учителей математики. Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Системы уравнений на егэ математика профиль

Предисловие.

Это пособие предназначено для подготовки к решению задач по теме «Уравнения и системы уравнений» и, в частности, задачи 13 Единого государственного экзамена (ЕГЭ) по математике (профильный уровень). Задача 13 представляет собой уравнение или систему уравнений. Ключевым признаком задачи является необходимость отбора полученных в результате решения того или иного уравнения корней в соответствии с вытекающими из условия ограничениями. При этом для решения задачи 13 необходимо уверенное владение навыками решения всех типов уравнений и систем уравнений, изучаемых в основной и старшей школе: целых рациональных, дробно-рациональных, иррациональных, тригонометрических, показательных, логарифмических.

Содержание.

Предисловие.
Диагностическая работа.
Часть I. Уравнения.
Часть II. Системы уравнений.
Ответы.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

📸 Видео

СИСТЕМА УРАВНЕНИЙ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

СИСТЕМА УРАВНЕНИЙ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Система уравнений с модулем. ЕГЭ математикаСкачать

Система уравнений с модулем. ЕГЭ математика

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Задание №13 (бывшее №12) с 0 и до уровня ЕГЭ за 7 часов | Математика ЕГЭ - УравненияСкачать

Задание №13 (бывшее №12) с 0 и до уровня ЕГЭ за 7 часов | Математика ЕГЭ - Уравнения

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ #shorts #профильныйегэСкачать

МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ II #математика #егэ  #shorts #профильныйегэ

Системы уравнений 7-11 класс. Вебинар | МатематикаСкачать

Системы уравнений 7-11 класс. Вебинар | Математика

Урок 4. Уравнения и системы уравнений. Алгебра ОГЭ . Вебинар | МатематикаСкачать

Урок 4. Уравнения и системы уравнений. Алгебра ОГЭ . Вебинар | Математика

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать

Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический метод

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

МЕТОД ГАУССА 😉 #егэ #математика #профильныйегэ #shorts #огэ

Когда начинать готовиться к ЕГЭ?Скачать

Когда начинать готовиться к ЕГЭ?

Простейшие уравнения ЕГЭ 2024/ Все типы задания №6 ЕГЭ профильСкачать

Простейшие уравнения ЕГЭ 2024/ Все типы задания №6 ЕГЭ профиль

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис ТрушинСкачать

✓ Пять способов решить задачу с параметром | ЕГЭ-2018. Задание 17. Математика | Борис Трушин

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис ТрушинСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive​​ #041 | Борис Трушин
Поделиться или сохранить к себе: