Системы рациональных уравнений и их решение

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Рациональные уравнения с примерами решения

Содержание:

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения Системы рациональных уравнений и их решение

Уравнения Системы рациональных уравнений и их решение— не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Системы рациональных уравнений и их решение

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что Системы рациональных уравнений и их решениекогда Системы рациональных уравнений и их решение

Пример №202

Решите уравнение Системы рациональных уравнений и их решение

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду Системы рациональных уравнений и их решениегде Системы рациональных уравнений и их решениеи Системы рациональных уравнений и их решение— целые рациональные выражения. Имеем:

Системы рациональных уравнений и их решение

Окончательно получим уравнение: Системы рациональных уравнений и их решение

Чтобы дробь Системы рациональных уравнений и их решениеравнялась нулю, нужно, чтобы числитель Системы рациональных уравнений и их решениеравнялся нулю, а знаменатель Системы рациональных уравнений и их решениене равнялся нулю.

Тогда Системы рациональных уравнений и их решениеоткуда Системы рациональных уравнений и их решениеПри Системы рациональных уравнений и их решениезнаменатель Системы рациональных уравнений и их решениеСледовательно, Системы рациональных уравнений и их решение— единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Системы рациональных уравнений и их решение

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду Системы рациональных уравнений и их решение

2) приравнять числитель Системы рациональных уравнений и их решение к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель Системы рациональных уравнений и их решение равен нулю, и записать ответ.

Использование основного свойства пропорции

Если Системы рациональных уравнений и их решението Системы рациональных уравнений и их решениегде Системы рациональных уравнений и их решение

Пример №203

Решите уравнение Системы рациональных уравнений и их решение

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Системы рациональных уравнений и их решениеИмеем: Системы рациональных уравнений и их решението есть ОДЗ переменной Системы рациональных уравнений и их решениесодержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: Системы рациональных уравнений и их решениеполучив пропорцию: Системы рациональных уравнений и их решение

По основному свойству пропорции имеем:

Системы рациональных уравнений и их решение

Решим это уравнение:

Системы рациональных уравнений и их решениеоткуда Системы рациональных уравнений и их решение

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Системы рациональных уравнений и их решение

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду Системы рациональных уравнений и их решение

3) записать целое уравнение Системы рациональных уравнений и их решение и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение Системы рациональных уравнений и их решение

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Системы рациональных уравнений и их решение

Областью допустимых значений переменной будут те значения Системы рациональных уравнений и их решениепри которых Системы рациональных уравнений и их решението есть все значения Системы рациональных уравнений и их решениекроме чисел Системы рациональных уравнений и их решениеА простейшим общим знаменателем будет выражение Системы рациональных уравнений и их решение

Умножим обе части уравнения на это выражение:

Системы рациональных уравнений и их решение

Получим: Системы рациональных уравнений и их решениеа после упрощения: Системы рациональных уравнений и их решението есть Системы рациональных уравнений и их решениеоткуда Системы рациональных уравнений и их решениеили Системы рациональных уравнений и их решение

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Системы рациональных уравнений и их решение

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень Системы рациональных уравнений и их решениеа второе — два корня Системы рациональных уравнений и их решение(решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

Системы рациональных уравнений и их решение

где Системы рациональных уравнений и их решение— натуральное число, Системы рациональных уравнений и их решение

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: Системы рациональных уравнений и их решениекг. Как понимать смысл записи Системы рациональных уравнений и их решение

Рассмотрим степени числа 3 с показателями Системы рациональных уравнений и их решение— это соответственно Системы рациональных уравнений и их решение

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим: Системы рациональных уравнений и их решение

Число Системы рациональных уравнений и их решениедолжно быть втрое меньше числа Системы рациональных уравнений и их решениеравного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Системы рациональных уравнений и их решениеРавенство Системы рациональных уравнений и их решениесправедливо для любого основания Системы рациональных уравнений и их решениепри условии, что Системы рациональных уравнений и их решение

Нулевая степень отличного от нуля числа а равна единице, то есть Системы рациональных уравнений и их решение при Системы рациональных уравнений и их решение

Вернемся к строке со степенями числа 3, где слева от числа Системы рациональных уравнений и их решениезаписано число Системы рациональных уравнений и их решениеЭто число втрое меньше, чем 1, то есть равно Системы рациональных уравнений и их решениеСледовательно, Системы рациональных уравнений и их решениеРассуждая аналогично получаем: Системы рациональных уравнений и их решениеи т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если Системы рациональных уравнений и их решение натуральное число, то Системы рациональных уравнений и их решение

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Рациональные неравенства и их системы. Системы уравнений

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Системы рациональных уравнений и их решение

К изучению предлагается тема «Рациональные неравенства и их системы. Системы уравнений». Для более уверенного решения систем рациональных неравенств и систем уравнений ученикам к рассмотрению предлагается рассмотреть решение систем уравнений. Решением системы является такая пара чисел, при подстановке которых получаем из системы верные равенства. Первое решение систем осуществляется методом подстановки, второе – графическим методом.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Уравнения и неравенства»

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Системы рациональных уравнений и их решение

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Видео:Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Видео:10 класс. Алгебра. Системы уравненийСкачать

10 класс. Алгебра. Системы уравнений

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Видео:8 класс, 5 урок, Первые представления о решении рациональных уравненийСкачать

8 класс, 5 урок, Первые представления о решении рациональных уравнений

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

💡 Видео

19 задание: Теория чисел | Математика с Кириллом Нэш | ЕГЭ 2024 | SMITUPСкачать

19 задание: Теория чисел | Математика с Кириллом Нэш | ЕГЭ 2024 | SMITUP

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.Скачать

Дробно-рациональные уравнения. Подготовка к экзаменам. 60 часть. 9 класс.

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

Алгебра 8 класс. Тема: "Понятие системы рациональных уравнений"Скачать

Алгебра 8 класс. Тема: "Понятие системы рациональных уравнений"

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебраСкачать

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебра

Решения рациональных уравнений и их системСкачать

Решения рациональных уравнений и их систем

Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline
Поделиться или сохранить к себе: