Системы двух линейных уравнений с двумя переменными с 18 способ подстановки

Решение системы линейных уравнений методом подстановки
Содержание
  1. Алгоритм решения системы линейных уравнений методом подстановки
  2. Примеры
  3. Решение задач по математике онлайн
  4. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
  5. Немного теории.
  6. Решение систем линейных уравнений. Способ подстановки
  7. Решение систем линейных уравнений способом сложения
  8. Системы линейных уравнений с двумя переменными. Часть 1. Метод подстановки для решения системы линейных уравнений с двумя переменными
  9. Как решать систему уравнений
  10. Основные понятия
  11. Линейное уравнение с двумя переменными
  12. Система двух линейных уравнений с двумя переменными
  13. Метод подстановки
  14. Пример 1
  15. Пример 2
  16. Пример 3
  17. Метод сложения
  18. Система линейных уравнений с тремя переменными
  19. Решение задач
  20. Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
  21. Задание 2. Как решать систему уравнений способом подстановки
  22. Задание 3. Как решать систему уравнений методом сложения
  23. Задание 4. Решить систему уравнений
  24. Задание 5. Как решить систему уравнений с двумя неизвестными
  25. 📽️ Видео

Алгоритм решения системы линейных уравнений методом подстановки

  1. Из любого уравнения системы выразить одну переменную через другую.
  2. Подставить во второе уравнение системы вместо переменной выражение, полученное на первом шаге.
  3. Решить второе уравнение относительно выраженной переменной.
  4. Подставить найденное значение переменной в выражение, полученное на первом шаге.
  5. Найти значение второй переменой.
  6. Записать ответ в виде упорядоченной пары найденных значений переменных.

Из второго уравнения выражаем y:

Подставляем выражение для y в первое уравнение:

Шаг 3 Решаем первое уравнение:

Подставляем значение x в выражение для y:

В последовательной записи:

$$ <left< begin 3x+y = 5 \ y-x = 1 end right.> Rightarrow <left< begin 3x+y = 5 \ y = x+1 end right.> Rightarrow <left< begin 3x+(x+1) = 5 \ y = x+1 end right.> Rightarrow <left< begin 4x = 5-1 \ y = x+1 end right.> Rightarrow $$ $$ Rightarrow <left< begin x = 1 \ y = x+1 end right.> Rightarrow <left< begin x = 1 \ y = 2end right.> $$

Примеры

Пример 1. Решите систему уравнений методом подстановки:

$ а) <left< begin 5x-4y = 3 \ 2x-3y = 4 end right.> Rightarrow <left< begin 5x-4y = 3 \ x = frac = 1,5y+2 end right.> Rightarrow <left< begin 5(1,5y+2)-4y = 3 \ x = 1,5y+2 end right.> Rightarrow $

$ Rightarrow <left< begin 7,5y+10-4y = 3 \ x=1,5y+2 end right.> Rightarrow <left< begin 3,5y = -7 \ x = 1,5y+2 end right.> Rightarrow <left< begin y = -2 \ x = 1,5y+2 end right.> Rightarrow <left< begin x = -1 \ y = -2end right.> $

$ б) <left< begin 4x-3y = 7 \ 3x-4y = 0 end right.> Rightarrow <left< begin 4x-3y = 7 \ y = frac x end right.> Rightarrow <left< begin 4x-3cdot frac x = 7 \ y = frac x end right.> Rightarrow <left< begin (4- frac)x = 7 \ y = frac x end right.> Rightarrow $

$Rightarrow <left< begin x = 7 cdot frac = 4 \ y = frac x = frac cdot 4 = 3 end right.> Rightarrow <left< beginx = 4 \ y = 3 end right.> $

$ в) <left< begin 5a-4b = 9 \ 2a+3b = -1 end right.> Rightarrow <left< begin 5a-4b = 9 \ a = frac = -1,5b-0,5 end right.> Rightarrow <left< begin 5(-1,5b-0,5)-4b = 9 \ a = -1,5b-0,5 end right.> Rightarrow $

$ Rightarrow <left< begin -7,5b-2,5-4b = 9 \ a = -1,5b-0,5 end right.> Rightarrow <left< begin-11,5b = 11,5 \ a = -1,5b-0,5 end right.> Rightarrow <left< begin a = 1 \ b = -1 end right.> $

$ г) <left< begin 7a+4b = 5 \ 3a+2b = 1 end right.> Rightarrow <left< begin 7a+4b = 5 \ b = frac = -1,5a+0,5 end right.> Rightarrow <left< begin 7a+4(-1,5a+0,5) = 5 \ b = -1,5a+0,5 end right.> Rightarrow $

$ Rightarrow <left< begin 7a-6a+2 = 5 \ b = -1,5a+0,5 end right.> Rightarrow <left< begin a = 3 \ b = -1,5cdot3+0,5 = -4 end right.> $

Пример 2. Найдите решение системы уравнений:

$а) <left< begin frac-y = 7 | times 4 \ 3x+ frac = 9 | times 2end right.> Rightarrow <left< begin x-4y = 28 \ 6x+y = 18 end right.> Rightarrow <left< begin x = 4y+28 = 4(y+7) \ 6 cdot 4(y+7)+y = 18 end right.> Rightarrow $

$Rightarrow <left< begin x = 4(y+7) \ 24y+168+y = 18 end right.> Rightarrow <left< begin x = 4(y+7) \ 25y = -150 end right.> Rightarrow <left< beginx = 4(-6+7) = 4 \ y = -6 end right.>$

$ в) <left< begin 3(5x-y)+14 = 5(x+y) \ 2(x-y)+9 = 3(x+2y)-16 end right.> Rightarrow <left< begin 15x-3y+14 = 5x+5y \ 2x-2y+9 = 3x+6y-16 end right.> Rightarrow $

$ Rightarrow <left< begin 10x-8y = -14 |:2 \ x+8y = 25 end right.> Rightarrow <left< begin 5x-4y = -7 \ x = -8y+25 end right.> Rightarrow <left< begin 5(-8y+25)-4y = -7 \ x = -8y+25 end right.> Rightarrow $

$ Rightarrow <left< begin -40y+125-4y = -7 \ x = -8y+25 end right.> Rightarrow <left< begin -44y = -132 \ x = -8y+25 end right.> Rightarrow <left< begin x = 1 \ y = 3 end right.> $

$ г) <left< begin 5-3(2x+7y) = x+y-52 \ 4+3(7x+2y) = 23x end right.> Rightarrow <left< begin 5-6x-21y = x+y-52 \ 4+21x+6y = 23x end right.> Rightarrow <left< begin 7x+22y = 57 \ 2x-6y = 4 |:2 end right.>$

$$ Rightarrow <left< begin 7x+22y = 57 \ x-3y = 2 end right.> Rightarrow <left< begin 7x+22y = 57 \ x = 3y+2 end right.> Rightarrow <left< begin 7(3y+2)+22y = 57 \ x = 3y+2 end right.> Rightarrow $$

$$ Rightarrow <left< begin 21y+14+22y = 57 \ x = 3y+2 end right.> Rightarrow <left< begin 43y = 43 \ x = 3y+2 end right.> Rightarrow <left< begin x = 5 \ y = 1 end right.>$$

Пример 3*. Найдите решение системы уравнений:

Перепишем систему и найдём решение для новых переменных:

$$ <left< begin 3a+8b = 5 \ 12b-a = 2 end right.> Rightarrow <left< begin 3(12b-2)+8b = 5 \ a = 12b-2 end right.> Rightarrow <left< begin 36b-6+8b = 5 \ a = 12b-2 end right.> Rightarrow $$

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Немного теории.

Видео:Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

Урок СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

Системы линейных уравнений с двумя переменными. Часть 1. Метод подстановки для решения системы линейных уравнений с двумя переменными

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Системы двух линейных уравнений с двумя переменными с 18 способ подстановки

Мы научились составлять математическую модель для решения различных прикладных задач. В результате задача сводится к технике – решению уравнения или системы уравнений. На этом уроке мы научимся решать системы уравнений, а именно системы линейных уравнений с двумя переменными.

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Как решать систему уравнений

Системы двух линейных уравнений с двумя переменными с 18 способ подстановки

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятияСкачать

7 класс, 37 урок, Системы двух линейных уравнения с двумя переменными. Основные понятия

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:Системы уравнений с двумя переменными. Алгебра 9 классСкачать

Системы уравнений с двумя переменными. Алгебра 9 класс

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:Системы двух линейных уравнений с двумя переменными. 6 класс.Скачать

Системы двух линейных уравнений с двумя переменными. 6 класс.

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

📽️ Видео

Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановкиСкачать

Математика. 6 класс. Решение системы линейных уравнений с двумя переменными способом подстановки

Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. Практ. часть. 6 класс.

Решение систем линейных уравнений способом подстановки.Скачать

Решение систем линейных уравнений способом подстановки.

7 класс// АЛГЕБРА // Системы уравнений с двумя переменными - Способ подстановкиСкачать

7 класс// АЛГЕБРА // Системы уравнений с двумя переменными - Способ подстановки

7 класс, 38 урок, Метод подстановкиСкачать

7 класс, 38 урок, Метод подстановки
Поделиться или сохранить к себе: