Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать
Высшая математика
Система обыкновенных дифференциальных уравнений n –го порядка
может быть записана в канонической форме :
в нормальной форме
или в векторной форме
При описании систем дифференциальных уравнений удобнее пользоваться векторной формой записи.
Решением системы обыкновенных дифференциальных уравнений Y ‘ = F ( x , Y ) называется вектор–функция Y ( x ) = Φ ( x ) , которая определена и непрерывно дифференцируема на промежутке ( a ; b ) и удовлетворяет системе Y ‘ = F ( x , Y ) на этом промежутке.
Задачей Коши для системы обыкновенных дифференциальных уравнений называется следующая задача: найти решение Y ( x ) системы Y ‘ = F ( x , Y ) такое, что Y ( x 0) = Y 0 . Здесь
Частным решением системы дифференциальных уравнений называется решение какой–нибудь ее задачи Коши.
Вектор–функция Y = Y ( x , C ) = Y ( x , C 1, C 2, … , C n) , зависящая от n произвольных постоянных C 1, C 2, … , C n называется общим решением системы дифференциальных уравнений на [ a ; b ] , если:
— при любых допустимых значениях постоянных C 1, C 2, … , C n функция Y ( x , C ) является решением системы на [ a ; b ] ;
— какова бы ни была начальная точка ( x 0, Y 0) из области определения правой части системы, существуют такие значения C *1, C *2, … , C *n постоянных C 1, C 2, … , C n , что функция
Y ( x , C *1, C *2, … , C *n ) является решением задачи Коши Y ( x 0) = Y 0 .
Пусть Y ( x ) = Φ ( x ) — решение системы, определенное на [ a , b ] . Тогда множество точек , x ∈ [ a , b ] — кривая в пространстве R n .
Эту кривую называют фазовой траекторией или просто траекторией системы, а пространство R n , в котором расположены фазовые траектории, фазовым пространством системы .
Пусть Y ( x ) = Φ ( x ) — решение системы Y ‘ = F ( x , Y ) , определенное на [ a , b ] .
Интегральная кривая системы определяется уравнением Y = Φ ( x ) и изображается в ( n + 1)–мерном пространстве R n+1
Фазовая траектория — проекция интегральной кривой на пространство R n.
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Нормальная система дифференциальных уравнений. Векторная запись нормальной системы.
Общий вид дифференциального уравнения первого порядка есть F(x,y,y¢)=0. Если это уравнение можно разрешить относительно у¢, т.е. записать в виде у¢=f(x,y), то говорят, что уравнение записано в нормальной форме (или в форме Коши).
Рассмотрим геометрическую трактовку нахождения решений уравнения. Возьмём некоторую точку (x0,y0) из области определения D функции f(x,y). Пусть у=j(х) – интегральная кривая, проходящая через эту точку. Из уравнения вытекает, что j¢(х0)=(х0,у0). Таким образом, угловой коэффициент касательной к интегральной кривой, проходящей через точку (х0,у0) равен (прих=х0) числу f(х0,у0).
Построим теперь для каждой точки (х0,у0) из области определения прямую, проходящую через эту точку и имеющую угловой коэффициент, равный f(х0,у0). В этом случае принято говорить, что эта прямая определяет направление в точке (х0,у0), а на множестве D задано поле направлений.
Если каждое уравнение, входящее в систему, является дифференциальным, т.е. имеет вид соотношения, связывающего неизвестные функции и их производные, то говорят о системе дифференциальных уравнений. Так система дифференциальных уравнений первого порядка с двумя неизвестными функциями записывается обычно в виде
На системы дифференциальных уравнений естественным образом обощается постановка задачи Коши для одного уравнения. Например, в случае данной системы задача Коши состоит в нахождении решения х1(t),x2(t), удовлетворяющих начальным условиям х1(t0)= х1 0 , x2(t0)= x2 0 , где t0, х1 0 , x2 0 – заданные числа. Для случая системы может быть доказана теорема существования и единственности решения задачи Коши, аналогичная теореме для одного уравнения.
Теорема существования и единственности решения задачи Коши.
Если в некоторой окрестности точки (х0,у0) функция f(х,у) определена, непрерывна и имеет непрерывную частную производную f¢y, то существует такая окрестность точки (х0,у0), в которой задача Коши имеет решение, притом единственное. (приводится без доказательства)
Задача о нахождении решений дифференциального уравнения у¢=f(x,y), удовлетворяющих начальному условию у(х0)=у0 , называется задачей Коши.
К системам дифференциальных уравнений первого порядка в известном смысле сводятся уравнения (и системы уравнений) любого порядка. Пример.
Пусть дано уравнение у¢¢¢=f(x,y,y¢,y¢¢). Если обозначить функцию y¢и y¢¢ соответственно через m и n, то уравнение можно заменить системой
состоящей из трёх уравнений первого порядка с тремя неизвестными функциями.
Векторная запись нормальной системы. (со слов Гончаренко)
Пусть дана нормальная система из n уравнений с n неизвестными.
Представим набор решений как вектор х= (x1,x2,…,xn) в проистранстве R n .
Функцию также можно записать в векторном виде f=(f(x),f(x),…,f(x)).
Векторная запись всей системы будет выглядеть следующия образом:
Видео:Видеоурок "Системы дифференциальных уравнений"Скачать
Системы дифференциальных уравнений векторная запись
Lv 1 = f, Lv 2 = f,
То есть сумма решений линейного однородного и линейного неоднородного уравнений (с тем же L) есть решение того же неоднородного уравнения; разность двух решений линейного неоднородного уравнения есть решение линейного однородного уравнения.
2.3. Линейная зависимость вектор-функций.
Вектор-функции x 1 (t), . x k (t) называются линейно зависимыми на интервале (или на множестве) М , если найдутся такие постоянные числа c1. ck, из которых хотя бы одно не равно нулю, что при всех t Î M имеем
Вектор-функции линейно независимы на M , если они не являются линейно зависимыми на M, то есть если равенство (12) (при всех t Î M одновременно) возможно лишь в случае c1 = . = сk = 0.
Понятие линейной зависимости вектор-функций на данном множестве M, содержащем более одной точки, отличается от известного из алгебры понятия линейной зависимости векторов.
Если вектор-функции x 1 (t), . x k (t) линейно зависимы на M, то при каждом t Î M их значения являются линейно зависимыми векторами, это следует из (12). Обратное неверно.
x 1 (t) = (1,1) и x 2 (t) = (t, t)
при любом t являются линейно зависимыми векторами.
Но как вектор-функции, они на любом интервале ( α, β) линейно независимы, так как при постоянных с1 и c2 равенство
на всем интервале ( α, β) возможно лишь при с1 = с2 = 0.
Действительно, c1x 1 (t) + c2 x 2 (t) = 0 эквивалентно выполнению равенства
2.3. Детерминант Вронского.
Детерминант Вронского W (t) или вронскиан для n-мерных вектор-функций
х 1 (t). , x n ( t ) — это детерминант n-го порядка, столбцы которого состоят из координат этих вектор-функций.
Если вектор-функции x 1 (t), . x n (t) линейно зависимы, то их вронскиан W(t) ≡ 0.
Если вронскиан W(t) ≠ 0 ( $ t ), то вектор-функции x 1 (t), . x n (t) линейно независимы.
Если вектор-функции x 1 (t), . x n (t) являются решениями системы х’ = A(t)x с непрерывной матрицей A ( t ), и их вронскиан равен нулю хотя бы при одном значении t , то эти вектор-функции линейно зависимы и их вронскиан W(t) ≡ 0.
Для вектор-функций, не являющихся решениями, утверждение леммы 3 неверно. В частности, для вектор-функций примера 2
x 1 (t) = (1,1) и x 2 (t) = (t, t)
имеем: W(t) ≡ 0, а они линейно независимы.
Далее рассматриваются решения линейной системы
Фундаментальной системой решений называется любая система n линейно независимых решений.
Покажем, что фундаментальные системы существуют. Возьмем t0 Î ( α, β) и любые n линейно независимых векторов b 1 , …, b n Î R n
Пусть х 1 (t). ,x n (t) — решения системы х’ = A(t)x с начальными условиями x j (t 0 ) = b j , j = 1. ,n.
Эти решения линейно независимы, так как при t = t0 их значения — линейно независимые векторы b 1 . b n , и равенство (12) возможно только при c1 = . = cn = 0.
Общим решением системы дифференциальных уравнений называют множество функций, содержащее все решения этой системы и только их (или формулу, представляющую это множество при всевозможных значениях произвольных постоянных).
Теорема 5 (об общем решении).
Пусть x l (t). x n (t) — какие-нибудь n линейно независимых решений системы
Общее решение системы есть
Теорема 5 означает, что множество решений системы х’ = A(t)x (х Î R n ) есть n-мерное линейное пространство.
Базисом в этом пространстве служит любая фундаментальная система решений. Равенство (13) есть представление любого элемента этого пространства в виде линейной комбинации элементов базиса.
Фундаментальной матрицей системы х’ = A(t)x называется матрица X(t), столбцы которой составляют фундаментальную систему решений.
Из леммы 3 следует, что det X(t) = W(t) ≠ 0.
С помощью фундаментальной матрицы X(t) общее решение (13) записывается в виде
где с — вектор-столбец с произвольными координатами c1. сn (так как X(t)c — линейная комбинация столбцов матрицы X(t), равная правой части (13) с коэффициентами с1. сn.
Найти линейно независимые решения и фундаментальную матрицу для системы
Из второго уравнения имеем у = с1 (произвольная постоянная). Подставляя в первое уравнение, получаем х’ = с1. Отсюда х = c1t + c2.
Общее решение есть х = c1t + c2,
Полагая с1 = 1, с2 = 0, находим частное решение х1 = t,
y1 = 1, а полагая с1 = 0, с2 = 1, находим другое решение х2 = 1,
y2 = 0. Их вронскиан W(t) = -1 ≠ 0. И в силу следствия леммы 2 эти решения линейно независимы. Поэтому фундаментальной является матрица
X T = x 1 x 2 y 1 y 2 .
Теорема 6 (переход от одной фундаментальной матрицы к другой).
Пусть X(t) — фундаментальная матрица, С — неособая (det С ≠ 0) постоянная матрица n x n. Тогда Y(t) = X(t)C — фундаментальная матрица той же системы. По этой формуле из данной фундаментальной матрицы X(t) можно получить любую фундаментальную матрицу Y(t), подбирая матрицу С.
Теорема 7 . Общее решение линейной неоднородной системы (10)
есть сумма ее частного решения и общего решения линейной однородной системы
3. ПРИМЕНЕНИЕ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ЭКОНОМИКИ.
Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построению математических моделей, основой которых являются дифференциальные уравнения.
В дифференциальных уравнениях неизвестная функция содержится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функций, представляющих собой решения этих уравнений.
На этой лекции мы рассмотрим пример применения теории дифференциальных уравнений в непрерывной модели экономики, где независимой переменной является время t . Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономической динамики.
3.1. Модель рынка с прогнозируемыми ценами.
Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тенденции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функциями эти характеристики описываются соответственно первой и второй производными функции цены P ( t ).
Рассмотрим конкретный пример. Пусть функции спроса D и предложения S имеют следующие зависимости от цены Р и ее производных:
D(t) = 3P′′ – P′ – 2P +18,
S(t) = 4P′′ + P′ + 3P + 3. (14)
Принятые в (14) зависимости вполне реалистичны: поясним это на слагаемых с производными функции цены.
1. Спрос «подогревается» темпом изменения цены: если темп растет ( Р» > 0), то рынок увеличивает интерес к товару, и наоборот. Быстрый рост цены отпугивает покупателя, поэтому слагаемое с первой производной функции цены входит со знаком минус.
2. Предложение в еще большей мере усиливается темпом изменения цены, поэтому коэффициент при Р» в функции S ( t ) больше, чем в D ( t ) . Рост цены также увеличивает предложение, потому слагаемое, содержащее Р’ , входит в выражение для S ( t ) со знаком плюс.
Требуется установить зависимость цены от времени. Поскольку равновесное состояние рынка характеризуется равенством D = S , приравняем правые части уравнений (14). После приведения подобных получаем
Соотношение (15) представляет линейное неоднородное дифференциальное уравнение второго порядка относительно функции P ( t ) . Как было установлено в предыдущем пункте, общее решение такого уравнения состоит из суммы какого-либо его частного решения и общего решения соответствующего однородного уравнения
Характеристическое уравнение имеет вид
Его корни — комплексно-сопряженные числа: k 1,2 = -1 ± 2 i, и, следовательно, общее решение уравнения (16) дается формулой
где С1 и С2 — произвольные постоянные.
В качестве частного решения неоднородного уравнения (15) возьмем решение Р = P st — постоянную величину как установившуюся цену. Подстановка в уравнение (15) дает значение P st :
Таким образом, общее решение уравнения (15) имеет вид
Нетрудно видеть, что P ( t ) P st = 3 при t , т.е. все интегральные кривые имеют горизонтальную асимптоту Р = 3 и колеблются около нее. Это означает, что все цены стремятся к установившейся цене P st с колебаниями около нее, причем амплитуда этих колебаний затухает со временем.
3.2. Частные решения: задача Коши и смешанная задача.
Приведем частные решения этой задачи в двух вариантах: задача Коши и смешанная задача.
1. Задача Коши. Пусть в начальный момент времени известна цена, а также тенденция ее изменения: При t =0
Подставляя первое условие в формулу общего решения (17), получаем
P(t) = 3 + e –t (cos 2t + C2 sin 2t). (18)
Дифференцируя , имеем отсюда
Теперь реализуем второе условие задачи Коши:
Р’ (0) = 2 C2 — 1 = 1, откуда C 2 = 1 . Окончательно получаем, что решение задачи Коши имеет вид
P(t) = 3 + e –t (cos 2t + sin 2t).
или в более удобной форме:
P t = 3+ 2 e — t cos 2 t — π 4 .
2. Смешанная задача. Пусть в начальный момент времени известны цена и спрос:
Поскольку первое начальное условие такое же, как и в предыдущем случае, то имеем и здесь решение (18). Тогда производные функции Р( t ) выражаются формулами
Отсюда Р’(0) =2 C 2 — 1 и Р»( 0 ) = —4 C 2 — 3 . Подставляя эти равенства во второе условие задачи, т.е. D ( 0 ) = 16 , имеем с учетом вида D ( t ) из первой формулы (14): С2 = -1. Итак, решение данной задачи имеет вид
или в более удобной форме:
P t = 3- 2 e — t sin 2 t — π 4 .
Интегральные кривые, соответствующие задачам 1 и 2, изображены на рисунке 1.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
[1] Клюшин В. Л. Высшая математика для экономистов: Учебное пособие. — М.: ИНФРА-М, 2009. — 448 с. — (Учебники РУДН).
[2] Колемаев В. А. Экономико-математическое моделирование. Моделирование макроэкономических процессов и систем: Учебник. М.: ЮНИТИ-ДАНА, 2005. — 295 с.
[3] Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. — 2-е изд., испр. — М.: Дело, 2001. — 688 с.
[4] Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2005. – 464, ил. (Серия «Учебное пособие»).
[5] Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. — 240 с.
🔍 Видео
Математика это не ИсламСкачать
Матричная форма записи системы линейных уравненийСкачать
ДУ Линейные системыСкачать
Система дифференциальных уравнений векторная формаСкачать
ОДУ. 4 Системы дифференциальных уравненийСкачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
18+ Математика без Ху!ни. Векторное произведение.Скачать
Решение систем Д/У: 1. Знакомство с функциями odeXYСкачать
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать
Урок 7.1 (теория) Система дифференциальных уравнений теплообмена и гидродинамикиСкачать
Решение матричных уравненийСкачать
Матричный метод решения систем уравненийСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 7Скачать
Математика без Ху!ни. Метод Гаусса.Скачать
Решение системы уравнений методом ГауссаСкачать