Системы дифференциальных уравнений векторная запись

Системы дифференциальных уравнений векторная запись

Системы дифференциальных уравнений векторная запись

СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. ОСНОВНЫЕ ПОНЯТИЯ

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Высшая математика

Система обыкновенных дифференциальных уравнений n –го порядка

может быть записана в канонической форме :

Системы дифференциальных уравнений векторная запись

в нормальной форме

Системы дифференциальных уравнений векторная запись

или в векторной форме

Системы дифференциальных уравнений векторная запись

Системы дифференциальных уравнений векторная запись

При описании систем дифференциальных уравнений удобнее пользоваться векторной формой записи.

Решением системы обыкновенных дифференциальных уравнений Y ‘ = F ( x , Y ) называется вектор–функция Y ( x ) = Φ ( x ) , которая определена и непрерывно дифференцируема на промежутке ( a ; b ) и удовлетворяет системе Y ‘ = F ( x , Y ) на этом промежутке.

Задачей Коши для системы обыкновенных дифференциальных уравнений называется следующая задача: найти решение Y ( x ) системы Y ‘ = F ( x , Y ) такое, что Y ( x 0) = Y 0 . Здесь

Системы дифференциальных уравнений векторная запись

Частным решением системы дифференциальных уравнений называется решение какой–нибудь ее задачи Коши.

Вектор–функция Y = Y ( x , C ) = Y ( x , C 1, C 2, … , C n) , зависящая от n произвольных постоянных C 1, C 2, … , C n называется общим решением системы дифференциальных уравнений на [ a ; b ] , если:

— при любых допустимых значениях постоянных C 1, C 2, … , C n функция Y ( x , C ) является решением системы на [ a ; b ] ;

— какова бы ни была начальная точка ( x 0, Y 0) из области определения правой части системы, существуют такие значения C *1, C *2, … , C *n постоянных C 1, C 2, … , C n , что функция

Y ( x , C *1, C *2, … , C *n ) является решением задачи Коши Y ( x 0) = Y 0 .

Пусть Y ( x ) = Φ ( x ) — решение системы, определенное на [ a , b ] . Тогда множество точек , x ∈ [ a , b ] — кривая в пространстве R n .

Эту кривую называют фазовой траекторией или просто траекторией системы, а пространство R n , в котором расположены фазовые траектории, фазовым пространством системы .

Пусть Y ( x ) = Φ ( x ) — решение системы Y ‘ = F ( x , Y ) , определенное на [ a , b ] .

Интегральная кривая системы определяется уравнением Y = Φ ( x ) и изображается в ( n + 1)–мерном пространстве R n+1

Фазовая траектория — проекция интегральной кривой на пространство R n.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Нормальная система дифференциальных уравнений. Векторная запись нормальной системы.

Общий вид дифференциального уравнения первого порядка есть F(x,y,y¢)=0. Если это уравнение можно разрешить относительно у¢, т.е. записать в виде у¢=f(x,y), то говорят, что уравнение записано в нормальной форме (или в форме Коши).

Рассмотрим геометрическую трактовку нахождения решений уравнения. Возьмём некоторую точку (x0,y0) из области определения D функции f(x,y). Пусть у=j(х) – интегральная кривая, проходящая через эту точку. Из уравнения вытекает, что j¢(х0)=(х00). Таким образом, угловой коэффициент касательной к интегральной кривой, проходящей через точку (х00) равен (прих=х0) числу f(х0,у0).

Построим теперь для каждой точки (х00) из области определения прямую, проходящую через эту точку и имеющую угловой коэффициент, равный f(х00). В этом случае принято говорить, что эта прямая определяет направление в точке (х00), а на множестве D задано поле направлений.

Если каждое уравнение, входящее в систему, является дифференциальным, т.е. имеет вид соотношения, связывающего неизвестные функции и их производные, то говорят о системе дифференциальных уравнений. Так система дифференциальных уравнений первого порядка с двумя неизвестными функциями записывается обычно в виде

На системы дифференциальных уравнений естественным образом обощается постановка задачи Коши для одного уравнения. Например, в случае данной системы задача Коши состоит в нахождении решения х1(t),x2(t), удовлетворяющих начальным условиям х1(t0)= х1 0 , x2(t0)= x2 0 , где t0, х1 0 , x2 0 – заданные числа. Для случая системы может быть доказана теорема существования и единственности решения задачи Коши, аналогичная теореме для одного уравнения.

Теорема существования и единственности решения задачи Коши.

Если в некоторой окрестности точки (х00) функция f(х,у) определена, непрерывна и имеет непрерывную частную производную f¢y, то существует такая окрестность точки (х00), в которой задача Коши имеет решение, притом единственное. (приводится без доказательства)

Задача о нахождении решений дифференциального уравнения у¢=f(x,y), удовлетворяющих начальному условию у(х0)=у0 , называется задачей Коши.

К системам дифференциальных уравнений первого порядка в известном смысле сводятся уравнения (и системы уравнений) любого порядка. Пример.

Пусть дано уравнение у¢¢¢=f(x,y,y¢,y¢¢). Если обозначить функцию y¢и y¢¢ соответственно через m и n, то уравнение можно заменить системой

состоящей из трёх уравнений первого порядка с тремя неизвестными функциями.

Векторная запись нормальной системы. (со слов Гончаренко)

Пусть дана нормальная система из n уравнений с n неизвестными.

Представим набор решений как вектор х= (x1,x2,…,xn) в проистранстве R n .

Функцию также можно записать в векторном виде f=(f(x),f(x),…,f(x)).

Векторная запись всей системы будет выглядеть следующия образом:

Видео:Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Системы дифференциальных уравнений векторная запись

Lv 1 = f, Lv 2 = f,

Системы дифференциальных уравнений векторная запись

То есть сумма решений линейного однородного и линейного неоднородного уравнений (с тем же L) есть решение того же неоднородного уравнения; разность двух решений линейного неоднородного уравнения есть решение линейного однородного уравнения.

2.3. Линейная зависимость вектор-функций.

Вектор-функции x 1 (t), . x k (t) называются линейно зависимыми на интервале (или на множестве) М , если найдутся такие постоянные числа c1. ck, из которых хотя бы одно не равно нулю, что при всех t Î M имеем

Системы дифференциальных уравнений векторная запись

Вектор-функции линейно независимы на M , если они не являются линейно зависимыми на M, то есть если равенство (12) (при всех t Î M одновременно) возможно лишь в случае c1 = . = сk = 0.

Понятие линейной зависимости вектор-функций на данном множестве M, содержащем более одной точки, отличается от известного из алгебры понятия линейной зависимости векторов.

Если вектор-функции x 1 (t), . x k (t) линейно зависимы на M, то при каждом t Î M их значения являются линейно зависимыми векторами, это следует из (12). Обратное неверно.

x 1 (t) = (1,1) и x 2 (t) = (t, t)

при любом t являются линейно зависимыми векторами.

Но как вектор-функции, они на любом интервале ( α, β) линейно независимы, так как при постоянных с1 и c2 равенство

на всем интервале ( α, β) возможно лишь при с1 = с2 = 0.

Действительно, c1x 1 (t) + c2 x 2 (t) = 0 эквивалентно выполнению равенства

Системы дифференциальных уравнений векторная запись

2.3. Детерминант Вронского.

Детерминант Вронского W (t) или вронскиан для n-мерных вектор-функций

х 1 (t). , x n ( t ) — это детерминант n-го порядка, столбцы которого состоят из координат этих вектор-функций.

Системы дифференциальных уравнений векторная запись

Если вектор-функции x 1 (t), . x n (t) линейно зависимы, то их вронскиан W(t) ≡ 0.

Если вронскиан W(t) ≠ 0 ( $ t ), то вектор-функции x 1 (t), . x n (t) линейно независимы.

Если вектор-функции x 1 (t), . x n (t) являются решениями системы х’ = A(t)x с непрерывной матрицей A ( t ), и их вронскиан равен нулю хотя бы при одном значении t , то эти вектор-функции линейно зависимы и их вронскиан W(t) ≡ 0.

Для вектор-функций, не являющихся решениями, утверждение леммы 3 неверно. В частности, для вектор-функций примера 2

x 1 (t) = (1,1) и x 2 (t) = (t, t)

имеем: W(t) ≡ 0, а они линейно независимы.

Далее рассматриваются решения линейной системы

Фундаментальной системой решений называется любая система n линейно независимых решений.

Покажем, что фундаментальные системы существуют. Возьмем t0 Î ( α, β) и любые n линейно независимых векторов b 1 , …, b n Î R n

Пусть х 1 (t). ,x n (t) — решения системы х’ = A(t)x с начальными условиями x j (t 0 ) = b j , j = 1. ,n.

Эти решения линейно независимы, так как при t = t0 их значения — линейно независимые векторы b 1 . b n , и равенство (12) возможно только при c1 = . = cn = 0.

Общим решением системы дифференциальных уравнений называют множество функций, содержащее все решения этой системы и только их (или формулу, представляющую это множество при всевозможных значениях произвольных постоянных).

Теорема 5 (об общем решении).

Пусть x l (t). x n (t) — какие-нибудь n линейно независимых решений системы

Общее решение системы есть

Системы дифференциальных уравнений векторная запись

Теорема 5 означает, что множество решений системы х’ = A(t)x (х Î R n ) есть n-мерное линейное пространство.

Базисом в этом пространстве служит любая фундаментальная система решений. Равенство (13) есть представление любого элемента этого пространства в виде линейной комбинации элементов базиса.

Фундаментальной матрицей системы х’ = A(t)x называется матрица X(t), столбцы которой составляют фундаментальную систему решений.

Из леммы 3 следует, что det X(t) = W(t) ≠ 0.

С помощью фундаментальной матрицы X(t) общее решение (13) записывается в виде

где с — вектор-столбец с произвольными координатами c1. сn (так как X(t)c — линейная комбинация столбцов матрицы X(t), равная правой части (13) с коэффициентами с1. сn.

Найти линейно независимые решения и фундаментальную матрицу для системы

Из второго уравнения имеем у = с1 (произвольная постоянная). Подставляя в первое уравнение, получаем х’ = с1. Отсюда х = c1t + c2.

Общее решение есть х = c1t + c2,

Полагая с1 = 1, с2 = 0, находим частное решение х1 = t,

y1 = 1, а полагая с1 = 0, с2 = 1, находим другое решение х2 = 1,

y2 = 0. Их вронскиан W(t) = -1 ≠ 0. И в силу следствия леммы 2 эти решения линейно независимы. Поэтому фундаментальной является матрица

X T = x 1 x 2 y 1 y 2 Системы дифференциальных уравнений векторная запись.

Теорема 6 (переход от одной фундаментальной матрицы к другой).

Пусть X(t) — фундаментальная матрица, С — неособая (det С ≠ 0) постоянная матрица n x n. Тогда Y(t) = X(t)C — фундаментальная матрица той же системы. По этой формуле из данной фундаментальной матрицы X(t) можно получить любую фундаментальную матрицу Y(t), подбирая матрицу С.

Теорема 7 . Общее решение линейной неоднородной системы (10)

есть сумма ее частного решения и общего решения линейной однородной системы

Системы дифференциальных уравнений векторная запись

3. ПРИМЕНЕНИЕ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЗАДАЧАХ ЭКОНОМИКИ.

Дифференциальные уравнения занимают особое место в ма­тематике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построе­нию математических моделей, основой которых являются диф­ференциальные уравнения.

В дифференциальных уравнениях неизвестная функция со­держится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функ­ций, представляющих собой решения этих уравнений.

На этой лекции мы рассмотрим пример примене­ния теории дифференциальных уравнений в непрерывной мо­дели экономики, где независимой переменной является вре­мя t . Такие модели достаточно эффективны при исследовании эволюции экономических систем на длительных интервалах времени; они являются предметом исследования экономичес­кой динамики.

3.1. Модель рынка с прогнозируемыми ценами.

Рассмотрим модель рынка с прогнозируемыми ценами. В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар. Однако спрос и предложение в реальных ситуациях зависят еще и от тен­денции ценообразования и темпов изменения цены. В моделях с непрерывными и дифференцируемыми по времени t функци­ями эти характеристики описываются соответственно первой и второй производными функции цены P ( t ).

Рассмотрим конкретный пример. Пусть функции спроса D и предложения S имеют следующие зависимости от цены Р и ее производных:

D(t) = 3P′′ – P′ – 2P +18,

S(t) = 4P′′ + P′ + 3P + 3. (14)

Принятые в (14) зависимости вполне реалистичны: поясним это на слагаемых с производными функции цены.

1. Спрос «подогревается» темпом изменения цены: если темп растет ( Р» > 0), то рынок увеличивает интерес к то­вару, и наоборот. Быстрый рост цены отпугивает покупателя, поэтому слагаемое с первой производной функции цены входит со знаком минус.

2. Предложение в еще большей мере усиливается темпом изменения цены, поэтому коэффициент при Р» в функции S ( t ) больше, чем в D ( t ) . Рост цены также увеличивает предложе­ние, потому слагаемое, содержащее Р’ , входит в выражение для S ( t ) со знаком плюс.

Требуется установить зависимость цены от времени. По­скольку равновесное состояние рынка характеризуется равен­ством D = S , приравняем правые части уравнений (14). После приведения подобных получаем

Системы дифференциальных уравнений векторная запись

Соотношение (15) представляет линейное неоднородное дифференциальное уравнение второго порядка относительно функции P ( t ) . Как было установлено в предыдущем пункте, общее решение такого уравнения состоит из суммы какого-либо его частно­го решения и общего решения соответствующего однородного уравнения

Характеристическое уравнение имеет вид

Его корни — комплексно-сопряженные числа: k 1,2 = -1 ± 2 i, и, следовательно, общее решение уравнения (16) дается фор­мулой

где С1 и С2 — произвольные постоянные.

Системы дифференциальных уравнений векторная запись

В качестве частно­го решения неоднородного уравнения (15) возьмем решение Р = P st — постоянную величину как установившуюся цену. Подстановка в уравнение (15) дает значение P st :

Таким образом, общее решение уравнения (15) имеет вид

Системы дифференциальных уравнений векторная запись

Нетрудно видеть, что P ( t ) Системы дифференциальных уравнений векторная запись P st = 3 при t Системы дифференциальных уравнений векторная запись Системы дифференциальных уравнений векторная запись , т.е. все интегральные кривые имеют горизонтальную асимптоту Р = 3 и колеблются около нее. Это означает, что все цены стремятся к установившейся цене P st с колебаниями около нее, причем амплитуда этих колебаний затухает со временем.

3.2. Частные решения: задача Коши и смешанная задача.

Приведем частные решения этой задачи в двух вариантах: задача Коши и смешанная задача.

1. Задача Коши. Пусть в начальный момент времени из­вестна цена, а также тенденция ее изменения: При t =0

Подставляя первое условие в формулу общего решения (17), получаем

P(t) = 3 + e –t (cos 2t + C2 sin 2t). (18)

Дифференцируя , имеем отсюда

Теперь реализуем второе условие задачи Коши:

Р’ (0) = 2 C2 — 1 = 1, откуда C 2 = 1 . Окончательно получаем, что решение задачи Коши имеет вид

P(t) = 3 + e –t (cos 2t + sin 2t).

Системы дифференциальных уравнений векторная запись

или в более удобной форме:

P t = 3+ 2 e — t cos 2 t — π 4 . Системы дифференциальных уравнений векторная запись

2. Смешанная задача. Пусть в начальный момент времени известны цена и спрос:

Поскольку первое начальное условие такое же, как и в преды­дущем случае, то имеем и здесь решение (18). Тогда произ­водные функции Р( t ) выражаются формулами

Отсюда Р’(0) =2 C 2 — 1 и Р»( 0 ) = —4 C 2 — 3 . Подставляя эти равенства во второе условие задачи, т.е. D ( 0 ) = 16 , имеем с учетом вида D ( t ) из первой формулы (14): С2 = -1. Итак, решение данной задачи имеет вид

Системы дифференциальных уравнений векторная запись

или в более удобной форме:

P t = 3- 2 e — t sin 2 t — π 4 Системы дифференциальных уравнений векторная запись.

Интегральные кривые, соответствующие задачам 1 и 2, изоб­ражены на рисунке 1.

Системы дифференциальных уравнений векторная запись

Системы дифференциальных уравнений векторная запись

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

[1] Клюшин В. Л. Высшая математика для экономистов: Учебное пособие. — М.: ИНФРА-М, 2009. — 448 с. — (Учебники РУДН).

[2] Колемаев В. А. Экономико-математическое моделирование. Моделирование макроэкономических процессов и систем: Учебник. М.: ЮНИТИ-ДАНА, 2005. — 295 с.

Системы дифференциальных уравнений векторная запись

[3] Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. — 2-е изд., испр. — М.: Дело, 2001. — 688 с.

[4] Красс М.С., Чупрынов Б.П. Математика для экономистов. СПб.: Питер, 2005. – 464, ил. (Серия «Учебное пособие»).

[5] Филиппов А. Ф. Введение в теорию дифференциальных уравнений: Учебник. Изд. 2-е, испр. М.: КомКнига, 2007. — 240 с.

🔍 Видео

Математика это не ИсламСкачать

Математика это не Ислам

Матричная форма записи системы линейных уравненийСкачать

Матричная форма записи системы линейных уравнений

ДУ Линейные системыСкачать

ДУ Линейные системы

Система дифференциальных уравнений векторная формаСкачать

Система дифференциальных уравнений векторная форма

ОДУ. 4 Системы дифференциальных уравненийСкачать

ОДУ. 4 Системы дифференциальных уравнений

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

18+ Математика без Ху!ни. Векторное произведение.Скачать

18+ Математика без Ху!ни. Векторное произведение.

Решение систем Д/У: 1. Знакомство с функциями odeXYСкачать

Решение систем Д/У: 1. Знакомство с функциями odeXY

Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 5

Урок 7.1 (теория) Система дифференциальных уравнений теплообмена и гидродинамикиСкачать

Урок 7.1 (теория) Система дифференциальных уравнений теплообмена и гидродинамики

Решение матричных уравненийСкачать

Решение матричных уравнений

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 7Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 7

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса
Поделиться или сохранить к себе: