В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.
Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать
Общие сведения об итерационных методах или методе простой итерации
Метод итерации — это численный и приближенный метод решения СЛАУ.
Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .
Рассмотрим систему A x = b .
Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.
Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.
Видео:1 3 Решение нелинейных уравнений методом простых итерацийСкачать
Метод Якоби
Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.
Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:
b i j = — a i j / a i i , i , j = 1 , 2 . . . , n
Элементы (компоненты) вектора d вычисляются по следующей формуле:
d i = b i / a i i , i = 1 , 2 , . . . , n
Расчетная формула метода простой итерации:
x ( n + 1 ) = B x ( x ) + d
Матричная запись (координатная):
x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b
Критерий окончания в методе Якоби:
x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε
В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:
x ( n + 1 ) — x ( n ) ε
Решить СЛАУ методом Якоби:
10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10
Необходимо решить систему с показателем точности ε = 10 — 3 .
Приводим СЛАУ к удобному виду для итерации:
x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1
Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.
В таком случае, первая итерация имеет следующий внешний вид:
x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01
Аналогичным способом вычисляются приближения к решению:
x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111
Находим норму матрицы В , для этого используем норму B ∞ .
Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:
x ( n + 1 ) — x ( n ) ε
Далее вычисляем нормы разности векторов:
x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .
Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.
x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .
Видео:Метод простых итераций пример решения нелинейных уравненийСкачать
Метод Зейделя
Метод Зейделя — метод является модификацией метода Якоби.
Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.
x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +
+ . . . + b i m x m ( n ) + d i
За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.
Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.
Решим 3 системы уравнений:
2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1
Приведем системы к удобному для итерации виду:
x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .
Отличительная особенность, условие сходимости выполнено только для первой системы:
Вычисляем 3 первых приближения к каждому решению:
1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109
Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.
2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129
Итерационный процесс разошелся.
Решение: x 1 = 1 , x 2 = 2
3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2
Итерационный процесс зациклился.
Решение: x 1 = 1 , x 1 = 2
Видео:Метод простой итерации Пример РешенияСкачать
Метод простой итерации
Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:
x = x — τ ( A x — b ) , τ — итерационный параметр.
Расчетная формула имеет следующий внешний вид:
x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .
Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .
Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .
τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .
Видео:Решение системы линейных уравнений методом простых итераций в MS ExcelСкачать
СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИИ
Многие практические задачи сводятся к решению системы нелинейных уравнений [2, 6, 10, 12].
Пусть для вычисления неизвестных Х, х2, . х„ требуется решить систему п нелинейных уравнений:
В отличие от систем линейных уравнений не существует прямых методов решения нелинейных систем общего вида. Лишь в некоторых случаях систему (4.1) можно решить непосредственно. Например, для случая двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного. Для решения систем нелинейных уравнений обычно используют итерационные методы. Рассмотрим два из них — метод простой итерации и метод Ньютона.
Видео:10 Численные методы решения нелинейных уравненийСкачать
Метод простой итерации
Систему уравнений (4.1) представим в следующем виде:
Запишем систему (4.2) в векторной форме: где
Для нахождения вектора корня х* = (х*,х*. х*) уравнения (4.3) часто удобно использовать метод итерации:
где начальное приближение х (0) * х*. Это грубое значение искомого корня. Заметим, что если процесс итерации (4.5) сходится, то предельное значение
обязательно является корнем уравнения (4.3). Действительно, предполагая, что соотношение (4.6) выполнено, и переходя к пределу в равенстве (4.5) прир—>оо, в силу непрерывности функции ф(х) будем иметь:
Таким образом, ?> есть корень векторного уравнения (4.3).
Рассмотрим метод простой итерации на примере системы двух нелинейных уравнений с двумя неизвестными:
Решением системы (4.7) для хе [о, Ь] и ye [с, d будут такие значения х* и у*, которые обращают эту систему в тождество. Необходимо найти х* и у* с заданной степенью точности е.
Запишем систему (4.7) в эквивалентной форме:
Последовательные приближения будут вычисляться по формулам:
где х0, уо — начальные приближения значения искомого корня.
Итерационный процесс можно считать законченным, как только выполнится неравенство
Для определения сходимости процесса имеет место следующая теорема.
Теорема. Пусть в некоторой заданной области хе[а, Ь] и ye[c,d] имеется единственное решение х*, у* системы (4.8) тогда, если:
- • ф)(х,у) и ф2(х, у) определены и непрерывно дифференцируемы в заданной области;
- • начальные приближения х0, у0и все последующие приближения х,„у„ принадлежат заданной области;
- • в рассматриваемой области выполняются неравенства:
то процесс последовательных приближений (4.9) сходится к решению системы уравнений (4.11).
Пр имер 4.1. Методом итерации приближенно решить систему Решение. Преобразуем данную систему к виду (4.2):
Из графического построения (см. рис. 4.1) видно, что система имеет два решения, отличающиеся только знаком.
Ограничимся нахождением положительного решения. Из чертежа видим, что за начальное приближение положительного решения системы можно принять
Рис. 4.1. Отделение корней системы нелинейных уравнений Полагая
Аналогично,
Точное решение системы Х = 0,8261, х2 = 0,5636.
Блок-схема метода итераций приведена на рис. 4.2. Имеют место следующие обозначения неравенств (4.11):
Видео:Метод итерацийСкачать
Метод итераций
Правила ввода функции
- Примеры
≡ x^2/(1+x)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3)
На рис.1а, 1б в окрестности корня |φ′(x)| 1, то процесс итерации может быть расходящимся (см. рис.2).
Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать
Достаточные условия сходимости метода итерации
Процесс нахождения нулей функции методом итераций состоит из следующих этапов:
- Получить шаблон с омощью этого сервиса.
- Уточнить интервалы в ячейках B2 , B3 .
- Копировать строки итераций до требуемой точности (столбец D ).
Примечание: столбец A — номер итерации, столбец B — корень уравнения X , столбец C — значение функции F(X) , столбец D — точность eps .
📽️ Видео
Способы решения систем нелинейных уравнений. 9 класс.Скачать
Решение систем линейных уравнений методом простой итерации в ExcelСкачать
8 Метод простой итерации Ручной счет Решение системы линейных уравнений СЛАУСкачать
Алгоритмы С#. Метод простых итерацийСкачать
Решение слау методом итераций. Метод простых итераций c++.Скачать
2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать
Лекция №2.3 Метод простых итерацийСкачать
Метод Ньютона (метод касательных) Пример РешенияСкачать
МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать
После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать
Способы решения систем нелинейных уравнений. Практическая часть. 9 класс.Скачать