При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.
Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).
Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.
Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- 11.3.6. Решение систем показательных уравнений
- 🔥 Видео
Видео:Как выразить х через у в линейном уравнении с двумя переменнымиСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать
Немного теории.
Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Видео:Решение систем уравнений второго порядка. 8 класс.Скачать
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )
Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
11.3.6. Решение систем показательных уравнений
Что является обязательным при решении системы показательных уравнений? Конечно, преобразование данной системы в систему простейших уравнений.
Решить системы уравнений:
Выразим у через х из (2) -го уравнения системы и подставим это значение в (1) -ое уравнение системы.
Решаем (2) -ое уравнение полученной системы:
2 х +2 x +2 =10, применяем формулу: a x + y =a x ∙a y .
2 x +2 x ∙2 2 =10, вынесем общий множитель 2 х за скобки:
2 х (1+2 2 )=10 или 2 х ∙5=10, отсюда 2 х =2.
2 х =2 1 , отсюда х=1. Возвращаемся к системе уравнений.
Ответ: (1; 2).
Представляем левую и правую части (1) -го уравнения в виде степеней с основанием 2, а правую часть (2) -го уравнения как нулевую степень числа 5.
Если равны две степени с одинаковыми основаниями, то равны и показатели этих степеней — приравниваем показатели степеней с основаниями 2 и показатели степеней с основаниями 5.
Получившуюся систему линейных уравнений с двумя переменными решаем методом сложения.
Находим х=2 и это значение подставляем вместо х во второе уравнение системы.
Находим у.
Ответ: (2; 1,5).
Если в предыдущих двух примерах мы переходили к более простой системе приравнивая показатели двух степеней с одинаковыми основаниями, то в 3-ем примере эта операция невыполнима. Такие системы удобно решать вводом новых переменных. Мы введем переменные u и v, а затем выразим переменную u через v и получим уравнение относительно переменной v.
Решаем (2) -ое уравнение системы.
v 2 +63v-64=0. Подберем корни по теореме Виета, зная, что: v1+v2=-63; v1∙v2=-64.
Получаем: v1=-64, v2=1. Возвращаемся к системе, находим u.
Так как значения показательной функции всегда положительны, то уравнения 4 x = -1 и 4 y = -64 решений не имеют.
Представляем 64 и 1 в виде степеней с основанием 4.
Приравниваем показатели степеней и находим х и у.
🔥 Видео
Решение систем уравнений методом подстановкиСкачать
Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать
Система с тремя переменнымиСкачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
9 класс, 11 урок, Методы решения систем уравненийСкачать
Симметрические системы / Как решать по шаблону? x/y+y/x=13/6; x+y=5Скачать
Как выразить x через y?Скачать
Решаем систему по-быстрому ➜ x+y=1; x⁴+y⁴=7 ➜ Как решать симметрические системы уравнений?Скачать
симметрические системы уравненийСкачать
Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Решите систему уравнений: x+y=2 ; xy-z²=1Скачать
СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать