Система уравнений в поле z5

Решение систем линейных уравнений

Эта страничка поможет решить Системы Линейных Алгебраических Уравнений (СЛАУ) методом Гаусса, матричным методом или методом Крамера, исследовать их на совместность (теорема Кронекера-Капелли), определить количество решений, найти общее, частное и базисные решения.

Введите коэффициенты при неизвестных в поля. Если Ваше уравнение имеет меньшее количество неизвестных, то оставьте пустыми поля при переменных, не входящих в ваше уравнение. Можно использовать дроби ( 13/31 ).

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Вычисления в полях вычетов

Рассмотрим некоторые особенности вычислений в полях вычетов. Найдем, например, определитель Система уравнений в поле z5, элементы которого суть вычеты из поля
(Z3, +3, ×3). Если действовать «по науке», надо писать

Можно, однако, поступить проще. Будем считать элементы определителя обычными целыми числами из кольца Z, тогда d=1×1–2×2= –3.

Как найти для целого числа из Z соответствующий вычет из Zn? Для этого надо к числу прибавить (или отнять от него) величину, кратную n, чтобы результат принадлежал множеству вычетов Zn=<0,1,¼,n–1>. В данном случае прибавим 3 и получим –3+3=0 – тот же результат.

В дальнейшем станем действовать аналогично, к тому же не будем педантично ставить индекс +n, ×n около символов операций, обозначая их просто + и
× , если значение индекса n ясно из контекста.

Рассмотрим решение системы линейных уравнений над полем вычетов.

Пример. Решим над тремя полями: Q, Z3, Z5 систему уравнений A×X=B, где Система уравнений в поле z5. т.е. Система уравнений в поле z5

Заметим, что коэффициенты системы (0, 1 и 2), включая свободные члены, можно рассматривать не только как числа (т.е. элементы поля Q), но и как элементы интересующих нас конечных полей Z3 и Z5. В противном случае постановку задачи пришлось бы как-то изменять.

Решать систему будем по правилу Крамера. Вычислим над полем Q четыре опре­делителя:

Система уравнений в поле z5.

Значения неизвестных найдем по формулам Крамера: Система уравнений в поле z5.

Приведем значения определителей в поле вычетов Z3=, получим: D=0, Dx=2, Dy=2, Dz=2. Видим, что над этим полем система несовместна.

Приведем значения определителей в поле вычетов Z5=: D=2, Dx=4, Dy=1, Dz=4. Значения неизвестных снова найдем по формулам Крамера: Система уравнений в поле z5. Как понимать найденное значение неизвестной Система уравнений в поле z5? Дробь Система уравнений в поле z5не является элементом поля Z5, поэтому ее надо рассматривать как выражение, которое необходимо вычислить согласно правилам действий в этом поле: Система уравнений в поле z5(поскольку произведение 2×3=6, а 6 в поле Z5 переходит в 1). Итак, решение системы уравнений над полем Z5 таково: x=2, y=3, z=2.

Сделаем проверку (символом Þ обозна­чен переход от целых чисел к вычетам по модулю 5). Первое уравнение: 1×2+2×2=6 Þ 1, второе уравнение: 1×3+2×2=7 Þ 2, третье уравнение: 2×2+1×2=6 Þ 1. Видим, что найден­ные значения вычетов удовлетворяют сис­теме уравнений над полем Z5.

Решим ту же систему над полем Z3 методом Гаусса. Составим расширенную матрицу: Система уравнений в поле z5. Если бы мы решали систему над полем рациональных чисел Q, то первым шагом выполнили бы операцию (3)–2×(1). В поле Z3 коэффициенту –2 соответствует вычет 1, поэтому выполним операцию (3)+1×(1). В 1-ом столбце имеем 2+1×1=3Þ0, во 2-ом столбце сохранится 0, в третьем столбце 1+1×2=3Þ0, в столбце свободных членов 1+1×1=2, так что Система уравнений в поле z5. В алгебраической форме 3-е уравнение этой системы имеет вид 0×x+0×y+0×z=2. Очевидно, что оно не имеет решения, поэтому система над полем Z3 несовместна.

Найдем решение той же системы над полем Z5 методом Гаусса. Вместо операции (3)–2×(1), с которой начинается решение этой системы над полем рациональных чисел Q, выполним операцию (3)+3×(1), поскольку в поле Z5 коэффициенту –2 соответствует вычет 3. В 1-ом столбце получим 2+3×1=5Þ0, во 2-ом столбце сохранится 0, в третьем, в 3-ем столбце имеем 1+3×2=7Þ2, в столбце свободных членов 1+3×1=4. Таким образом, получим Система уравнений в поле z5. 3-ю строку этой матрицы можно сократить (разделить) на 2: Система уравнений в поле z5.

Теперь выполним операции (1)+3×(3) и (2)+3×(3) – в 1-й и во 2-й строках 3-го столбца получится 2+3×1=5Þ0, остальные элементы этих строк сохраняться: Система уравнений в поле z5.

Видим, что получилось решение, ранее найденное по правилу Крамера: x=2, y=3, z=2.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Системы линейных уравнений над полем.

Рассмотрим один из наиболее распространенных на практике методов решения систем линейных уравнений над полем; называемый методом Гаусса.

Пусть дана система уравнений над произвольным полем. Если А = Оmхn, то система совместна только при β ↓ = 0 ↓ . При выполнении этого условия любой вектор из Р ( n ) является ее решением. Далее считаем, что А — ненулевая матрица. Приведем расширенную матрицу В = (А,β ↓ ) к специальному ступенчатому виду с помощью элементарных преобразований строк. Пусть при этом получилась матрица С = (сij)mx(n+1)типа S(i1. ir). Тогда система равносильна системе уравнений

где С’ = (сij)mхn,a γ ↓ —последний столбец матрицы С. В зависимости от значений параметров r,i1. ir возможны следующие три принци­пиально различных случая.

1) ir = п + 1. В этом случае столбец β ↓ матрицы В не выражается линейно через столбцы матрицы А, и система уравнений несовместна.

2) ir ≤ n,r= п.В этом случае матрица С имеет тип S(1,2. n), а тогда имеем:β ↓ = A1 ↓ c1 n+1 + . + An ↓ cnn+1 и система столбцов A1 ↓ , . , An линейно независима. Отсюда и следует, что столбецγ ↓ является единственным решением системы уравнений . Следовательно, в рассматриваемом случае система совместна и определенна.

которая, очевидно, равносильна системе (1), Подставляя в (3) вместо хir+1. xiппроизвольные элементы air+l , . , ainполя P, мы однозначно определим значения аi1. аir остальных неизвестных xi1. xir так, что набор (a1. ,an) будет решением системы (3). Нетрудно заметить, что каждое решение системы (3) можно получить указанным способом. Так как r ↓ ), можно сделать следующий вывод. При решении системы уравнений методом Гаусса логически возможны следующие взаимно исключающие случаи:

1) rangA ≠rangВ, система несовместна;

2) rangА = rangВ= п, система совместна и определенна;

Эту теорему называют теоремой Кронекера-Капеллив честь немецкого математика Л. Кронекера (1823—1891) и итальянского математика А. Капелли (1855-1910).

Пояснение. Система уравнений Ax=b разрешима тогда и только тогда, когда operatorname A = operatorname(A, b), где (A, b) — расширенная матрица, полученная из матрицы A приписыванием столбца b.

ДОК-ВО

Пусть система совместна. Тогда существуют числа x_1,dots,x_ninmathbb R такие, что b=x_1 a_1+dots+x_n a_n. Следовательно, столбец b является линейной комбинацией столбцов a_1,dots,a_n матрицы A. Из того что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что operatorname A = operatorname B.

Пусть operatorname A = operatorname B = r. Возьмём в матрице A какой-нибудь базисный минор. Так как operatorname B = r, то он же будет базисным минором и матрицы B. Тогда, согласно теореме о базисном миноре, последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A.

Следствия

· Количество главных переменных системы равно рангу системы.

· Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Теорема (критерий определенности).Система линейных уравнении над полем имеет единственное решение тогда и только тогда,когда ранги основной и расширенной матриц системы равны числу её неизвестных.

Система уравнений в поле z5

Теорема.Совместная и неопределенная система линейных уравнений над полем Р имеет бесконечно много решений при бесконечном поле Р и q n — r решений при |Р| = q, где п — число неизвестных, аr — ранг основной (и расширенной) матрицы системы.

Рассмотрим еще метод решения систем линейных уравнений над полем, основанный на использовании ранговых подматриц матриц этих систем.

Пусть дана система с основной матрицей А и расширенной матрицей В = (A, β ↓ )и известно, что rangA = rangВ = r. Выберем в матрице А произвольную ранговую подматрицу

Система уравнений в поле z5

Так как rangB = r и А есть подматрица матрицы В, то А’ является ранговой подматрицей и для матрицы В, Отсюда и легко получить, что система строк Система уравнений в поле z5является базисом системы всех строк матрицы В. Поэтому матрицу В элементарными преобразованиями строк можно привести к матрице вида:

Система уравнений в поле z5

Также равносильна системе уравнений

где β↓ — последний столбец матрицы B’, а А’ получена из В’ удалением столбца β . Удалив из системы (4) последние m-r уравнений и перенеся в оставшихся уравнениях в правые части все слагаемые, не содержащие неизвестных xj1, . , xjrполучим систему из r уравнений, равносильную системе:

Система уравнений в поле z5(5)

Подставив в (5) вместо xjr+1, . , xjnпроизвольные элементы из Р, мы получим систему rуравнений с r неизвестными xj1, . xjr, которая по теореме Крамера имеет единственное решение xj1= aj1, . xjr= аjr. В итоге мы найдем решение (a1, . an) системы (5) . Легко видеть, что таким образом можно получить все решения системы (5). Действительно, если γ = (с1, . ,cn) — любое решение системы (5), то, заменив в (5) хi на сi при всех i Є Система уравнений в поле z5,получим систему верных равенств, которая свидетельствует о том, что cj1. cjrесть решение системы, полученной из (5) заменой xjr+1, . xjnсоответственно элементами cjr+1. cjn.

Замечание 1. Вместо того чтобы решать методом Крамера все системы уравнений, получаемые из (5) заменой xjr+1, . , xjn всевозможными элементами поля Р, можно решить методом Крамера саму систему (5), считаяxjr+1. xjn параметрами со значениями из поля Р. В итоге неизвестные xj1, . , xjrбудут представлены в виде аффинных функций от переменных xjr+1, . , xjn. Придавая последним произвольные значения из Р и вычисляя соответствующие значения неизвестных xj1. xjrполучим все решения системы (5).

Замечание 2. Набор неизвестных xjr+1, . xjnиз правых частей уравнений системы (5) называют системой свободных неизвестных системы уравнений В общем случае система свободных неизвестных для системы находится неоднозначно, а определяется выбором ранговой подматрицы в матрице A.

3. Поле частных коммутативного кольца без делителей нуля. Простые поля. Расширения полей. Поле разложения многочлена. Конечные поля и их свойства

По́ле в общей алгебре — алгебра, для элементов которой определены операции сложения, вычитания, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.

По́лем называется множество F с двумя бинарными операциями + (аддитивная операция или сложение) и cdot (мультипликативная операция или умножение), если оно (вместе с этими операциями) образует коммутативное ассоциативное кольцо c единицей, все ненулевые элементы которого обратимы.

Иными словами, множество F с двумя бинарными операциями + (сложение) и cdot (умножение) называется полем, если оно образует коммутативную группу по сложению, все его ненулевые элементы образуют коммутативную группу по умножению, и выполняется свойство дистрибутивности.

Примеры полей

Числа вида a + bsqrt, a,bin , относительно обычных операций сложения и умножения. Это один из примеров квадратичного поля, которое образует подполе в .

_p — поле вычетов по модулю p, где p — простое число.

_q — конечное поле из q=p^k элементов, где p — простое число, k — натуральное. Все конечные поля имеют такой вид.

(x) — поле рациональных функций вида f(x)/g(x), где f и g — многочлены над некоторым полем (при этом g ne 0, а f и g не имеют общих делителей, кроме констант).

Определение. Элементы a и b кольца, для которых Система уравнений в поле z5, Система уравнений в поле z5, но ab = 0, называются делителями нуля. Кольцо без делителей нуля называется также областью целостности.

Теорема 1. Из ab = ac следует b = c, если только Система уравнений в поле z5и не является делителем нуля.

Доказательство. Из ab = ac следует abac = 0 или a(bc) = 0. Но так как Система уравнений в поле z5и не делитель нуля, то bc = 0, b = c.

В дальнейшем нам придется иметь дело исключительно с кольцами без делителей нуля. Для них из ab = ac и Система уравнений в поле z5следует b = c.

При умножении справедливы обычные правила знаков, а именно:

Теорема 2. Поле не имеет делителя нуля, т. е. если ab = 0, то либо a = 0, либо b = 0.

Доказательство. Если ab = 0 и a ≠ 0, то, умножая обе части равенства на a -1 , найдем 1 · b = a -1 · 0, т. е. b = 0.

Итак, поле является кольцом без делителей нуля. Утверждение, обратное этому, вообще неверно: существуют кольца без делителей нуля (например, кольцо целых чисел), не являющиеся полями. Однако для конечных колец обратная теорема также верна. А именно:

Теорема 3. Всякое конечное кольцо без делителей нуля, содержащее более одного элемента, является полем.

Доказательство. Достаточно проверить свойство VII. Пусть a ≠ 0. Каждому элементу x кольца поставим в соответствие элемент y =ax. Если x1x2, то также y1xy, т. к. иначе ax1 = ax2 и x1 = x2(Теорема1).Значит, xy есть взаимно однозначное отображение всего кольца R на некоторое его подмножество M, т. е. R

M. Но по основнай теореме о конечных множествах (Конечное множество не равномощно никакому его собственному подмножеству и собственному надмножеству) конечное множество R не равномощно своему собственному подмножеству. Поэтому R = M, т. е. для любого элемента Система уравнений в поле z5существует в R элемент q такой, что qb, т. е. aq = b, что и доказывает VII.

Так как все элементы поля, отличные от нуля, образуют по умножению коммутативную группу, то для любого элемента a ≠ 0 степень a n определена при любом целом показателе n.

Для частного элементов любого поля верны те же правила оперирования, что и для обыкновенных дробей.

Простые поля

Подполе. Простое поле. Множество M поля P называется подполем P, если оно само является полем при тех же операциях сложения и умножения, которые заданы в поле P. Тогда P называется надполем или расширением поля M.

Так, поле рациональных чисел является подполем поля действительных чисел, а последнее — подполем поля комплексных чисел.

Теорема 1. Для того чтобы множество M поля P, содержащее не менее двух элементов, было подполем, необходимо и достаточно, чтобы сумма, разность, произведение и частное (если только оно существует в P) любых элементов из M снова принадлежали к M.

Доказательство вполне аналогично проведенному для соответствующей теоремы о кольцах (теорема о кольцах: Для того чтобы непустое подмножество M кольца R было его подкольцом, необходимо и достаточно, чтобы сумма, разность и произведение любых двух элементов из M снова принадлежали M.).

Всякое подполе M поля P содержит 0 как разность aa, где Система уравнений в поле z5, и единицу как частное Система уравнений в поле z5, где Система уравнений в поле z5, a ≠ 0.

Теорема 2. Пересечение (в смысле пересечения множеств) любого множества надполей поля P опять является подполем поля P.

Соответствующая теорема верна и для колец, т. е. пересечение любого множества подколец кольца R есть подкольцо кольца R. Доказательство ее вполне аналогично данному здесь для полей.

Доказательство. Пусть <Ms> есть некоторое множество подполей, где индексы s образуют множество S и Система уравнений в поле z5— пересечение всех подполей Ms данного множества; 0 и 1 входят в каждое подполе Ms и, значит, в D. Итак, D содержит не менее двух элементов. Если aиb — элементы D, то они входят в каждое Ms и по теореме 5 a + b, ab, ab, а при b ≠ 0 и Система уравнений в поле z5также входят в Ms, а значит, и в D. В силу теоремы 5 D — подполе поля P.

Поле, не имеющее подполей, отличных от него самого, называется простым.

Примерами простых полей могут служить поле рациональных чисел и поля вычетов по простому модулю p.

Любое подполе M поля P рациональных чисел содержит число 1, а значит, и все его кратные n · 1 = n, т. е. все целые числа, а значит, и все их частные, т. е. все рациональные числа. Итак, M = P, т. е. P — простое поле. Точно так же любое подполе M поля Cpвычетов по простому модулю p содержит класс (1), служащий единицей Cp, а значит, любой класс (r) как r-кратное класса (1). Итак, M= Cp, т. е. Cp — простое поле.

Можно доказать, что этими полями в некотором смысле исчерпываются все простые поля.

Теорема 3. Любое поле содержит простое подполе и притом только одно.

Доказательство. Поле P вообще содержит подполя (например, само P). Пусть D есть пересечение всех подполей поля P. По теореме 6 D является подполем P и по самому определению входит в любое подполе. Пусть M — подполе D, отличное от D.

Из определения подполя следует, очевидно, что M будет подполем и для P, и D не входит в M, что невозможно. Итак, D — простое подполе P. Если D’ — также простое подполе поля P, то пересечение Система уравнений в поле z5будет опять подполем поля P, причем Система уравнений в поле z5и Система уравнений в поле z5. Но из определения подполя следует, что в таком случае будет подполем как для D, так и для D’, а так как D и D’ — простые подполя, то D = = D’, чем доказана единственность простого подполя.

Расширения полей

Расшире́ние по́ля K — поле E, содержащее данное поле K в качестве подполя. Исследование расширений является важной задачей теории полей, так как любой гомоморфизм полей является расширением.

Базовые определения

Если E — поле, его подполе — это его подмножество K, замкнутое относительно сложения и умножения, взятия обратного и противоположного элементов и содержащее единицу, на котором введены те же операции, что и в поле E. В этом случае E называется расширением поля K, заданное расширение обычно обозначают Esupset K (также используются обозначения E/K и Ksubset E). Любой гомоморфизм полей инъективен, то есть является вложением. Из этого следует, что задание конкретного расширения Esupset K эквивалентно заданию гомоморфизма f:Kto E.

Если задано расширение Esupset K и подмножество S поля E, то наименьшее подполе E, содержащее K и S, обозначается K(S) и называется полем, порождённым множеством S над полем K. Расширения, порождённые одним элементом, называются простыми расширениями, а расширения, порождённые конечным множеством — конечно порождёнными расширениями.

Для любого расширения Esupset K E является векторным пространством над полем K. В этой ситуации элементы E можно понимать как «векторы», а элементы K — как «скаляры», умножение вектора на скаляр задаётся операцией умножения в поле E. Размерность этого векторного пространства называется степенью расширения и обозначается [E:K]. Расширение степени 1 называется тривиальным, расширения степени 2 и 3 — квадратичными и кубическими соответственно. Расширение конечной степени называют конечным, в противном случае — бесконечным.

📺 Видео

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Алгебра 9 класс. Решение систем уравнений через подстановку.Скачать

Алгебра 9 класс. Решение систем уравнений через подстановку.

Системы комплексных уравненийСкачать

Системы комплексных уравнений

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Система уравнений. Тема1 Система линейных уравнений.Скачать

Система уравнений.  Тема1  Система линейных уравнений.

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Системы уравнений Тема3 С истемы ур-й в которых одно ур-е 1ой степени а другие 2ой и более высокой.Скачать

Системы уравнений Тема3 С истемы ур-й в которых одно ур-е 1ой степени а другие 2ой и более высокой.
Поделиться или сохранить к себе: