Система уравнений с тремя неизвестными метод сложения

Системы линейных уравнений с тремя переменными

Система уравнений с тремя неизвестными метод сложения

  • Система уравнений с тремя неизвестными метод сложения
  • Система уравнений с тремя неизвестными метод сложения
  • Линейным уравнением называется уравнение вида:

    В этом уравнении — неизвестные, а — действительные (или комплексные) числа. При этом называются коэффициентами уравнения, а — свободным членом.

    Рассмотрим систему трех линейных уравнений с тремя неизвестными:

    Из трех способов решения этих систем: графического, способа подстановки и способа сложения остается два последних способа. Графический способ уже не проходит, так как пришлось бы находить точку пересечения трех плоскостей. А это трудно изобразить.

    Способ подстановки для трех уравнений похож на способ подстановки для двух уравнений с двумя неизвестными, только у этого способа на один шаг больше. Первое: выражаем одно из неизвестных из одного уравнения через два остальных неизвестных и подставляем это выражение в оставшиеся два уравнения. Эти оставшиеся два уравнения составляют систему из двух уравнений с двумя неизвестными. А дальше решаем эту полученную систему и находим два неизвестных, а затем, зная их, и третье неизвестное.

    Пример 1 Решить систему уравнений: способом подстановки.

    Выразим из первого уравнения через остальные неизвестные и свободный член. Найденное выражение подставим в остальные уравнения.

    Далее, оставляя первое уравнение в покое, решаем систему из двух получившихся уравнений с неизвестными и (предварительно разделив обе части второго уравнения на ).

    Получили единственное решение системы

    Рассмотрим теперь способ сложения. Так же как и для двух уравнений с двумя неизвестными, нужно при помощи сложения уравнений добиться, чтобы одно из неизвестных пропало.Приведем пример.

    Пример 2 Решить систему уравнений: способом сложения.

    Постараемся получить два уравнения с двумя неизвестными. Избавимся от неизвестной . Для этого удвоенное первое уравнение сложим почленно с удвоенным вторым уравнением, а удвоенное второе уравнение прибавим к третьему уравнению:

    Система уравнений с тремя неизвестными метод сложения

    Далее производим почленное сложение двух уравнений с двумя неизвестными, исключая неизвестную :

    Система уравнений с тремя неизвестными метод сложения

    Из последнего уравнения системы находим Система уравнений с тремя неизвестными метод сложения. Подставляя найденное значение во второе уравнение, находим . Наконец из первого уравнения находим . Итак — единственное решение системы.

    В заключении решим задачу, которая приводится к системе с тремя неизвестными.

    Задача В трех урнах — шариков. В первой урне шариков больше чем во второй на столько, сколько шариков в третьей урне. Число шариков во второй урне относится к числу шариков в третьей урне как . Сколько шариков в каждой урне?

    Обозначим число шариков в 1-й, 2-й и 3-й урнах через соответственно. Тогда первое условие задачи дает уравнение , второе условие — , а третье условие — . Запишем три полученные уравнения в систему, сделав предварительно третье уравнение линейным:

    Складывая почленно первые два уравнения находим .Решаем систему из двух оставшихся уравнений:

    Итак, в урнах соответственно и шариков.

    Длины волн инфракрасного света достаточно велики, чтобы перемещаться сквозь облака, которые в противном случае блокировали бы наш обзор. Используя большие инфракра сные телескопы, астрономы смогли заглянуть в ядро нашей галактики. Большое количество звезд излучают часть своей электромагнитной энергии в виде видимого света, крошечной части спектра, к которой чувствительны наши глаза.

    Так как длина волны коррелирует с энергией, цвет звезды говорит нам, насколько она горячая. Используя телескопы, чувствительные к различным диапазонам длин волн спектра, астрономы получают представление о широком круге объектов и явлений во вселенной.

    Пример №1 Постройте центральную симметрию тетраэдра, относительно точки O, изображенных на рисунке 3.

    Система уравнений с тремя неизвестными метод сложения

    Для построения такой центральной симметрии сначала проведем через все точки тетраэдра прямые, каждая из которых будет проходить через точку O. На них построим отрезки, удовлетворяющие условиям |AO|=|A?O|, |BO|=|B?O|, |CO|=|C?O|, |DO|=|D?O| Таким образом, и получим искомую симметрию (рис. 4).

    Система уравнений с тремя неизвестными метод сложения

    В ряду разных механических движений особенным значением обладают колебания. Это движения и процессы, имеющие периодичность во времени.

    В среде электромагнитных явлений также значительное место заняли электромагнитные колебания. В этих колебаниях заряды, токи, электрические и магнитные поля изменяются согласно периодическим законам.

    Совет №1 Велосипедист, имеющий скорость 300 м/с, или идеальный газ, оказывающий давление 100 паскалей в большой тепловой машине — это странно.

    Система уравнений с тремя неизвестными метод сложения

  • Система уравнений с тремя неизвестными метод сложения
  • Система уравнений с тремя неизвестными метод сложения
  • Система уравнений с тремя неизвестными метод сложения

    Нужна помощь с курсовой или дипломной работой?

    Видео:Система с тремя переменнымиСкачать

    Система с тремя переменными

    Система линейных уравнений с тремя переменными

    Линейное уравнение с тремя переменными и его решение

    Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

    Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; frac x-8y-5z = 7$

    Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

    Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

    Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

    О тождествах – см. §3 данного справочника

    Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

    Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

    Система уравнений с тремя неизвестными метод сложения

    Решение системы линейных уравнений с тремя переменными методом подстановки

    Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

    Например: решить систему

    $$ <left< begin 3x+2y-z = 8 \ x-y+z = -2 \ 2x-3y-5z = 1 end right.> Rightarrow <left< begin 3(y-z-2)+2y-z = 8 \ x = y-z-2 \ 2(y-z-2)-3y-5z = 1 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = y-z-2 \ 5y-4z = 14 \ -y-7z = 5 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ 5(-7z-5)-4z = 14 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ -39z = 39 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = 2-(-1)-2 = 1 \ y = -7cdot(-1)-5 = 2 \ z = -1 end right.> Rightarrow <left< begin x = 1 \ y = 2 \ z = -1 end right.> $$

    Решение системы линейных уравнений с тремя переменными методом Крамера

    Для системы с 3-мя переменными действуем по аналогии.

    Дана система 3-х линейных уравнений с 3-мя переменными:

    $$ <left< begin a_1 x+b_1 y+c_1 z = d_1 \ a_2 x+b_2 y+c_2 z = d_2 \ a_3 x+b_3 y+c_3 z = d_3 end right.> $$

    Определим главный определитель системы:

    $$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end $$

    и вспомогательные определители :

    $$ Delta_x = begin d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 end, Delta_y = begin a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 end, Delta_z = begin a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 end $$

    Тогда решение системы:

    Соотношение значений определителей, расположения плоскостей и количества решений:

    Три плоскости пересекаются в одной точке

    Три плоскости параллельны

    Две или три плоскости совпадают или пересекаются по прямой

    Бесконечное множество решений

    Осталось определить правило вычисления определителя 3-го порядка.

    Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

    $$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end = a_1 = begin b_2 & c_2 \ b_3 & c_3 end — b_1 = begin a_2 & c_2 \ a_3 & c_3 end + c_1 = begin a_2 & b_2 \ a_3 & b_3 end = $$

    $$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

    Примеры

    Пример 1. Найдите решение системы уравнений методом подстановки:

    $$<left< begin z = 3x+2y-13 \ 2x-y+3(3x+2y-13) = -2 \ x+2y-(3x+2y-13) = 9 end right.> Rightarrow <left< begin z = 3x+2y-13 \ 11x+5y = 37 \ -2x = -4 end right.> Rightarrow $$

    $$Rightarrow <left< begin z = 3cdot2+2cdot3-13 = -1 \ y = frac = 3 \ x = 2 end right.> Rightarrow <left< begin x = 2 \ y = 3 \ z = -1 end right.> $$

    $$ <left< begin x = -y-3z+6 \ 2(-y-3z+6)-5y-z = 5\ (-y-3z+6)+2y-5z = -11 end right.> Rightarrow <left< begin x = -y-3z+6 \ -7y-7z = -7 |:(-7) \ y-8z = -17 end right.> Rightarrow $$

    $$ Rightarrow <left< begin x = -y-3z+6 \ y+z = 1 \ y-8z = -17 end right.> Rightarrow <left< begin x = -y-3z+6 \ 9z = 18 \ y = 1-z end right.> Rightarrow <left< begin x = 1-6+6 = 1 \ z = 2 \ y = 1-2 = -1 end right.> Rightarrow$$

    Пример 2. Найдите решение системы уравнений методом Крамера:

    $$ Delta = begin 3 & 2 & -1 \ 2 & -1 & 3\ 1 & 2 & -1 end = 3 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -1 \ 1 & 2 \ end = $$

    $$ Delta_x = begin 13 & 2 & -1 \ -2 & -1 & 3 \ 9 & 2 & -1 \ end = 13 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin -2 & 3 \ 9 & -1 \ end — 1 = begin -2 & -1 \ 9 & 2 \ end = $$

    $$ Delta_y = begin 3 & 13 & -1 \ 2 & -2 & 3 \ 1 & 9 & -1 \ end = 3 = begin -2 & 3 \ 9 & -1 \ end — 13 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -2 \ 1 & 9 \ end = $$

    $$ Delta_z = begin 3 & 2 & 13 \ 2 & -1 & -2 \ 1 & 2 & 9 \ end = 3 = begin -1 & -2 \ 2 & 9 \ end — 2 = begin 2 & -2 \ 1 & 9 \ end + 13 = begin 2 & -1 \ 1 & 2 \ end = $$

    $$ Delta = begin 1 & 1 & 3 \ 2 & -5 & -1\ 1 & 2 & -5 end = 1 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & -5 \ 1 & 2 \ end = $$

    $$ Delta_x = begin 6 & 1 & 3 \ 5 & -5 & -1 \ -11 & 2 & -5 \ end = 6 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 5 & -1 \ -11 & -5 \ end + 3 = begin 5 & -5 \ -11 & 2 \ end = $$

    $$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

    $$ Delta_y = begin 1 & 16 & 3 \ 2 & 5 & -1 \ 1 & -11 & -5 \ end = 1 = begin 5 & -1 \ -11 & -5 \ end — 6 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & 5 \ 1 & -11 \ end = $$

    $$ Delta_z = begin 1 & 1 & 6 \ 2 & -5 & 5 \ 1 & 2 & -11 \ end = 1 = begin -5 & 5 \ 2 & -11 \ end — 1 = begin 2 & 5 \ 1 & -11 \ end + 6 = begin 2 & -5 \ 1 & 2 \ end = $$

    Пример 3*. Решите систему уравнений относительно x,y,и z:

    $$ a neq b, b neq c, a neq c $$

    Решаем методом замены:

    $$ <left< begin z = -(a^3+a^2 x+ay)\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 end right.> Rightarrow <left< beginz = -(a^3+a^2 x+ay)\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \ (c^2-a^2 )x+(c-a)y = a^3-c^3 end right.> $$

    Т.к. $ a neq b$ второе уравнение можно сократить на $(a-b) neq 0$

    Т.к.$ a neq c$ третье уравнение можно сократить на $(a-с) neq 0 $. В третьем уравнении после сокращения поменяем знаки:

    Из второго уравнения получаем:

    Т.к. $b neq c$ можно сократить на $(b-c) neq 0$:

    $$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

    $$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$

    Видео:Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Математика

    67. Особенные случаи систем уравнений с тремя неизвестными . Возьмем следующую систему уравнений:

    3x + 4y + 5z = 17
    2x + 3y + 4z = 15
    5x + 7y + 9z = 32

    Наблюдательный человек здесь может подметить, что третье уравнение вовсе не является новым, а является следствием двух первых: каждый член 3-го уравнения получается от сложения соответствующих членов 1-го и 2-го уравнения (5x = 3x + 2x, 7y = 4y + 3y; 9z = 5z + 4z; 32 = 17 + 15), и само собою понятно, что если
    3x + 4y + 5z должно равняться 17,
    2x + 3y + 4z должно равняться 15,
    то (3x + 4y + 5z) + (2x + 3y + 4z) должно равняться 32.

    Поэтому мы здесь имеем, в сущности, только 2 уравнения с 3 неизвестными, и они имеют бесконечно много решений.

    Можно составлять такие системы и более сложным путем. Возьмем два уравнения:

    x – 2y + 3z = 7
    2x + y – z = 5

    Умножим каждое из них на какое-либо число и сложим (или вычтем) по частям полученные уравнения. Умножим обе части 1-го уравнения, например, на 3 и обе части второго на (–2) и полученные уравнения сложим. Тогда получим уравнения:

    Это уравнение является следствием двух первых и поэтому все три уравнения, взятые вместе, должны иметь бесконечно много решений.

    Попробуем решать эти уравнения: 1) из 1-го и 3-го сложением по частям исключим x; 2) из 2-го и 3-го, умножив предварительно третье на 2, также исключим x:

    Система уравнений с тремя неизвестными метод сложения

    Если теперь разделить обе части 1-го из полученных уравнений на 2 и обе части 2-го на 3, то получим одно и то же уравнение, а именно:

    Это обстоятельство и является признаком того, что наша система имеет бесконечно много решений.

    Если мы изберем такой план: 1) из 1-го и, напр., 3-го уравнений определим x и y через z; 2) подставим полученные выражения в 3-е уравнение, то должны получить само собою очевидное равенство, вроде 0 = 0 или 7 = 7 или 15 = 15 или –11 = –11 и т. п.

    Система уравнений с тремя неизвестными метод сложения

    то после предыдущего становится ясным, что эти 3 уравнения совместно решить нельзя. В самом деле, ведь левая часть 3-го уравнения получается от сложения левых частей 1-го и 2-го уравнений, а в таком случае эта сумма должна равняться 17 + 15 или 32, но не может равняться 33.

    Также точно можно, взяв 2 уравнения произвольно, составить третье, несовместимое с ними, умножением каждого из взятых двух уравнений на какое-нибудь число и сложением (или вычитанием) полученных уравнений, причем известный член должно как-либо изменить. Например, если первое из взятых уравнений умножим на 2 (получим: 6x + 8y + 10z = 34), второе на 3 (получим: 6x + 9y + 12z = 45), сложим полученные уравнения по частям, но вторую часть как-либо изменим (напр., вместо получающейся суммы 79 возьмем 100), то полученное уравнение

    12x + 17y + 22z = 100

    не совместимо с первыми двумя.

    Если кто-либо стал бы решать систему несовместимых уравнений, то пришел к результату явно нелепому, например:

    📸 Видео

    Решение систем уравнений методом сложенияСкачать

    Решение систем уравнений методом сложения

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.

    7 класс, 39 урок, Метод алгебраического сложенияСкачать

    7 класс, 39 урок, Метод алгебраического сложения

    Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

    Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

    Система уравнений. Метод алгебраического сложенияСкачать

    Система уравнений. Метод алгебраического сложения

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

    СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

    Решение системы уравнений методом ГауссаСкачать

    Решение системы уравнений методом Гаусса

    Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

    Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    9 класс, 11 урок, Методы решения систем уравненийСкачать

    9 класс, 11 урок, Методы решения систем уравнений

    6 способов в одном видеоСкачать

    6 способов в одном видео

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

    ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

    Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравненийСкачать

    Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравнений

    Решение систем уравнений методом подстановкиСкачать

    Решение систем уравнений методом подстановки

    Системы уравнений с тремя переменнымиСкачать

    Системы уравнений с тремя переменными

    Системы уравнений Метод сложения (вычитания)Скачать

    Системы уравнений  Метод сложения (вычитания)

    МЕТОД СЛОЖЕНИЯ | 7 класс алгебра | решение систем уравненийСкачать

    МЕТОД СЛОЖЕНИЯ | 7 класс алгебра | решение систем уравнений
    Поделиться или сохранить к себе: