Система уравнений с квадратами пример

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Системы уравнений, сводящиеся к квадратным

Вы будете перенаправлены на Автор24

В этой статье мы рассмотрим примеры решения таких систем уравнений с одной и двумя переменными, которые сводятся к решению квадратных уравнений. Существует множество видов таких систем. Охватить все виды таких систем уравнений в рамках одной статьи нельзя. Мы не будем вдаваться здесь в терминологию самих уравнений, а просто на примерах рассмотрим решения некоторых из них.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Системы с одной переменной

Классическим случаем систем, которые сводятся к квадратным можно непосредственно считать системы, которые и состоят из квадратных уравнений. Приведем такой пример.

Решим первое уравнение с помощью формул.

Найдем для начала для нашего уравнения значение дискриминанта.

$D=(sqrt)^2-4cdot 2cdot (-7)=7+56=63$

Так как $63$ – положительное число, то мы приходим к первому случаю (два корня). Найдем их по выше найденным формулам.

Решим второе уравнение вынесением общего множителя (как частный случай квадратного уравнения).

Выбирая общий корень, получим

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Системы с двумя неизвестными

Рассмотрим систему с двумя уравнениями, которая имеет в своем составе одно уравнение первой степени, а второе уравнение второй степени. Для ее решения нам нужно будет из линейного уравнения выразить одну из переменных и подставить в другое, тем самым и получив квадратное уравнение. Далее решение уже очевидно. Рассмотрим пример:

Вначале выражаем из второго $x$

Подставляя в первое и производим элементарные преобразования

Мы перешли к решению квадратного уравнения. Сделаем это с помощью формул. Найдем дискриминант:

Найдем вторую переменную.

Для первого корня:

Для второго корня:

Готовые работы на аналогичную тему

Рассмотрим теперь систему в которой оба уравнения имеют вторую степень и покажем немного другой ход его приведения к решению квадратного уравнения.

Разделив на $y^2$ второе уравнение, получим

Сделаем в нем следующую замену $frac=q$, получим квадратное уравнение

Решая его с помощью формул, будем получать

Используя первый корень, получим $x=-y$, подставим в первое

Используя второй корень, получим $x=frac y$, подставим в первое

Так же нужно не забыть, что мы делили на $y^2$ и, поэтому, проверить, нет ли решения при $y=0$:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 24 06 2021

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Урок в 9-м классе «Система уравнений, сводящихся к квадратным»

Разделы: Математика

Цели урока:

  1. Повторить ранее изученные различные способы решения уравнений, сводящихся к квадратным.
  2. Научить сотрудничеству учеников посредством работы в малых группах, а так же взаимопомощи в процессе обучения. 3. Развитие познавательного интереса, интереса к педагогической деятельности.

Форма проведения: Работа в малых группах, с участием консультантов.

ХОД УРОКА

I. Организация начала урока.

Деление на группы

II. Сообщение учащимся цели предстоящей работы. Мотивация учения.

III. Интеллектуальная разминка. (Приложение 1)

Разминка в форме тестовых заданий. Подготовка к ЕГЭ.

IV. Проверка индивидуального домашнего задания, направленного на повторение основных понятий, основополагающих знаний, умений, способов действий. У доски работают консультанты. На предыдущем уроке им было задано индивидуальное домашнее задание.

Системы нелинейных уравнений, сводящихся к квадратным. (Приложение 2)

Решить систему уравнений Система уравнений с квадратами пример

Решение: Если вычесть второе уравнение из первого, получим Система уравнений с квадратами примерЗначит надо решить систему уравнений

Система уравнений с квадратами пример

Система уравнений с квадратами пример

откуда Система уравнений с квадратами пример. Корнями этого квадратного уравнения служат Система уравнений с квадратами пример. Если y1=3, то из Система уравнений с квадратами примернаходим х1=1. Если же Система уравнений с квадратами пример.

Ответ: Система уравнений с квадратами пример

Система уравнений с квадратами пример

Система уравнений с квадратами пример

Ответ: Система уравнений с квадратами пример

Метод введения новых неизвестных при решении систем уравнений. (Приложение 3)

Решить систему уравнений Система уравнений с квадратами пример

Решение. Обозначим Система уравнений с квадратами примерчерез u, а Система уравнений с квадратами примерчерез v. Тогда система примет вид

Система уравнений с квадратами пример

То есть получится система двух линейных уравнений с двумя неизвестными u и v. Из первого уравнения выражаем u через v: Система уравнений с квадратами примери подставляя во второе уравнение, получим Система уравнений с квадратами пример, откуда v=2. Теперь находим u=1 и решаем уравнения Система уравнений с квадратами пример

Ответ: Система уравнений с квадратами пример

Система уравнений с квадратами пример

Система уравнений с квадратами пример

Система уравнений с квадратами пример

Ответ: Система уравнений с квадратами пример

Решить систему уравнений Система уравнений с квадратами пример

Решение. Заметим, что для решений системы выполняется условие Система уравнений с квадратами пример. В самом деле, из первого уравнения системы следует, что если Система уравнений с квадратами пример, а числа Система уравнений с квадратами примерне удовлетворяют второму уравнению системы. Разделим первое уравнение на Система уравнений с квадратами пример. Получится уравнение

Система уравнений с квадратами пример

Введем вспомогательное неизвестное Система уравнений с квадратами пример. Уравнение примет вид Система уравнений с квадратами пример. Это квадратное уравнение, имеющее корни Система уравнений с квадратами пример. Таким образом, из первого уравнения мы получаем, что либо Система уравнений с квадратами примерлибо Система уравнений с квадратами пример. Осталось подставить выражения Система уравнений с квадратами примери Система уравнений с квадратами пример(рассмотрев оба случая) во второе уравнение системы. В первом случае получится уравнение Система уравнений с квадратами пример, откуда Система уравнений с квадратами пример; соответственно Система уравнений с квадратами пример. Во втором случае получается уравнение Система уравнений с квадратами пример, откуда Система уравнений с квадратами пример; соответственно Система уравнений с квадратами пример

Ответ: Система уравнений с квадратами пример

Возможный способ оформления

Система уравнений с квадратами пример

разделим первое уравнение на Система уравнений с квадратами пример, получим

Система уравнений с квадратами пример

Система уравнений с квадратами пример

Пусть Система уравнений с квадратами пример, тогда

Система уравнений с квадратами пример

Ответ: Система уравнений с квадратами пример

V. Работа в малых группах.

Решите систему уравнений

Система уравнений с квадратами пример

Решите систему уравнений

Система уравнений с квадратами пример

VI. Подведение итогов урока.

VII. Задание на дом.

Задание по группам. Группа консультантов выполняет № 624 (4, 6, 8).

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Система уравнений с квадратами пример

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Видео:Все про уравнения для задания 9 на ОГЭ 2024 по математикеСкачать

Все про уравнения для задания 9 на ОГЭ 2024 по математике

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Видео:СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать

СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

📽️ Видео

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Задание №20. Экзамен ОГЭ. Система уравнений #shortsСкачать

Задание №20. Экзамен ОГЭ. Система уравнений #shorts

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебраСкачать

СИСТЕМА УРАВНЕНИЙ различные способы решения 9 10 класс алгебра

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере
Поделиться или сохранить к себе: