Подробней о раскрытии модуля в уравнении, см. §40 справочника для 7 класса, а также пример 2 §14 данного справочника.
Подробней о раскрытии модуля в неравенстве, см. §10 данного справочника.
- п.1. Примеры
- Урок алгебры в 9-м классе (занятие элективного курса) по теме «Решение уравнений и неравенств, содержащих модули»
- Презентация к уроку
- Уравнения с модулем
- Слева модуль, справа число
- Переменная как под модулем, так и вне модуля
- Квадратные уравнения с заменой |x| = t
- Модуль равен модулю
- Два или несколько модулей
- Модуль в модуле
- 📺 Видео
п.1. Примеры
б) ( left< begin mathrm & \ mathrm & endright. )
Проанализируем первый график:
Исходная прямая y = x – 1 превращается в ломаную y = |x – 1|, «отражается» в точке (1; 0) в положительную полуплоскость y > 0.
Далее, ломаная y = |x – 1| опускается на 1 вниз y = |x – 1| – 1.
Наконец, области y = |x – 1| – 1 с отрицательными Y снова отражаются в положительную полуплоскость y > 0.
Второй график – окружность с центром (1; 0), радиусом 1.
Решение – точка A(1; 3) и треугольник BCD, заданный системой трех неравенств:
( left< begin mathrm & \ mathrm & \ mathrm & endright. )
Пример 3. Найдите значения параметра a, при которых система имеет ровно два решения:
( left< begin mathrm & \ mathrm & endright. )
y = x 2 – 5|x| + 4 – парабола y = x 2 – 5x + 4 = (x – 1)(x – 4), x > 0, отраженная в отрицательную полуплоскость x 0 является прямая ( mathrm<x_0=frac=frac=2,5> )
Вершина лежит на оси. Ордината вершины: y0 = 2,5 2 – 5 · 2,5 + 4 = –2,25.
В полуплоскости x –2,25 решений бесконечное множество (отрезки кривой).
Ответ: a = –2,25.
Видео:Неравенства с модулем | Математика | TutorOnlineСкачать
Урок алгебры в 9-м классе (занятие элективного курса) по теме «Решение уравнений и неравенств, содержащих модули»
Презентация к уроку
На занятии изучается методика решения уравнений и неравенств, содержащих модули. Даётся подробная классификация уравнений и неравенств с модулем.
Введение. Определение модуля и его геометрический смысл.
«Модуль» (от лат. modulus-мера) ввёл английский математик Р. Котес (1682–1716). Знак модуля – немецкий математик (в 1841г.) К. Вейерштрасс (1815–1897).
Модуль числа a есть расстояние от нуля до точки a,
Модуль разности двух чисел равен расстоянию между точками числовой прямой, соответствующим этим точкам.
Используя определение модуля и его геометрический смысл, можно решить простейшие уравнения и неравенства с модулем. Простейшие уравнения и неравенства удобно решать с помощью равносильных преобразований: возведение в квадрат и т.д.
Изучение нового материала
Учитель даёт систематизацию материала, классификацию уравнений и неравенств с модулем. Показывает презентацию. Таблица №1
Таблица №1 Классификация уравнений и неравенств с модулем
Видео:6 класс, 24 урок, Модульные уравнения и неравенства с одной переменнойСкачать
Уравнения с модулем
Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.
Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.
Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.
Прежде всего вспомним, что
Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)
Видео:11 класс, 29 урок, Уравнения и неравенства с модулямиСкачать
Слева модуль, справа число
Это самый простой случай. Решим уравнение
Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:
Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.
Видео:Система уравнений с модулями #1Скачать
Переменная как под модулем, так и вне модуля
Здесь приходится раскрывать модуль по определению. . . или соображать!
Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:
Решение первой системы: . У второй системы решений нет.
Ответ: 1.
Первый случай: x ≥ 3. Снимаем модуль:
Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.
Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:
Значит, больше трёх и потому является корнем исходного уравнения
Стало быть, годятся лишь и .
Ответ:
Видео:НЕРАВЕНСТВА С МОДУЛЕМСкачать
Квадратные уравнения с заменой |x| = t
Поскольку , удобно сделать замену |x| = t. Получаем:
Видео:Уравнения с модулемСкачать
Модуль равен модулю
Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:
Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:
Остаётся решить каждое из уравнений совокупности и записать ответ.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Два или несколько модулей
Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.
Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)
Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.
Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:
Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.
Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:
Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.
Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:
Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.
Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:
Ничего нового. Мы и так знаем, что x = 1 является решением.
Видео:НЕРАВЕНСТВА С МОДУЛЕМ 😉 ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Модуль в модуле
Начинаем с раскрытия внутреннего модуля.
1) x ≤ 3. Получаем:
Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.
1.1) Получаем в этом случае:
Это значение x не годится, так как не принадлежит рассматриваемому промежутку.
1.2) . Тогда:
Это значение x также не годится.
Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.
Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:
Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.
Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.
Читайте также о том, как решать неравенства с модулем.
📺 Видео
СИСТЕМА НЕРАВЕНСТВ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Как решать систему неравенств с 2 модулями (пример) - bezbotvyСкачать
Неравенства с модулем Часть 1 из 2 Простейшие неравенстваСкачать
Неравенства с модулем. Как правильно раскрывать модульСкачать
Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать
Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать
Решение линейных неравенств, содержащих переменную под знаком модуля. Урок 3.Скачать
Уравнение с модулемСкачать
9 класс, 5 урок, Неравенства с модулямиСкачать
Контрольная работа. Уравнения с МОДУЛЕМСкачать
Как легко решить сложное неравенство с двойным модулемСкачать
Решение линейных нерав-в с одной переменной, содерж-х переменную под знаком модуля. Практ.ч. 6 классСкачать