Алгоритм решения системы линейных уравнений методом сложения
- Умножить обе части одного или обоих уравнений так, чтобы коэффициенты при одной из переменных стали противоположными (или равными) числами.
- Сложить (или отнять) уравнения, чтобы избавиться от одной из переменных.
- Решить второе уравнение относительно выраженной переменной.
- Решить полученное уравнение с одной переменной.
- Найти вторую переменную.
- Записать ответ в виде упорядоченной пары найденных значений переменных.
Умножаем первое уравнение на 2
Отнимаем от первого уравнения второе:
Находим y из первого уравнения:
В последовательной записи:
$$ <left< begin 3x+y = 5 | times 2 \ x+2y = 5 end right.> Rightarrow (-) <left< begin 6x+2y = 10 \ x+2y = 5 end right.> Rightarrow <left< begin 5x = 5 \ x+2y = 5 end right.> Rightarrow <left< begin x = 1 \ y = 5-3x = 2 end right.> $$
Примеры
Пример 1. Решите систему уравнений методом сложения:
$ а) <left< begin 5x-4y = 3 | times 2 \ 2x-3y = 4 | times 5 end right.> Rightarrow <left< begin 10x-8y = 6 \ 10x-15y = 20 end right.> Rightarrow <left< begin 7y = -14 \ 2x-3y = 4 end right.> Rightarrow <left< begin x = frac = -1 \ y=-2 end right.> $
$ б) <left< begin 4x-3y = 7 | times 3 \ 3x-4y = 0 | times 4 end right.> Rightarrow (-) <left< begin 12x-9y = 21 \ 12x-16y = 0 end right.> Rightarrow <left< begin 7y = 21 \ x = frac y end right.> Rightarrow <left< begin x = 4 \ y = 3 end right.> $
$ в) <left< begin 5a-4b = 9 | times 2 \ 2a+3b = -1 | times 5 end right.> Rightarrow (-) <left< begin 10a-8b = 18 \ 10a+15b = -5 end right.> Rightarrow <left< begin -23b = 23 \ a = frac end right.> Rightarrow <left< begin a = 1 \ b = -1 end right.> $
$ г) <left< begin 7a+4b = 5 \ 3a+2b = 1 | times (-2) end right.> Rightarrow (+) <left< begin 7a+4b = 5 \ -6a-4b = -2 end right.> Rightarrow <left< begin a = 3 \ b = frac end right.> Rightarrow <left< begin a = 3 \ b = -4 end right.>$
Пример 2. Найдите решение системы уравнений:
$$а) <left< begin frac-y = 7 \ 3x+ frac = 9 | times 2end right.> Rightarrow (+) <left< begin frac -y = 7 \ 6x+y = 18 end right.> Rightarrow <left< begin 6 frac x = 25 \ y = 18-6xend right.> Rightarrow $$
$$Rightarrow <left< begin x = 25: frac = 25 cdot frac = 4 \ y = 18-6 cdot 4 = -6 end right.> $$
$ в) <left< begin 3(5x-y)+14 = 5(x+y) \ 2(x-y)+9 = 3(x+2y)-16 end right.> Rightarrow <left< begin 15x-3y+14 = 5x+5y \ 2x-2y+9 = 3x+6y-16 end right.> Rightarrow $
$ г) <left< begin 5-3(2x+7y) = x+y-52 \ 4+3(7x+2y) = 23x end right.> Rightarrow <left< begin 5-6x-21y = x+y-52 \ 4+21x+6y = 23x end right.> Rightarrow <left< begin 7x+22y = 57 \ 2x-6y = 4 |:2 end right.>$
$$ Rightarrow <left< begin 7x+22y = 57 \ x-3y = 2 | times 7 end right.> Rightarrow (-) <left< begin 7x+22y = 57 \ 7x-21y = 14 end right.> Rightarrow <left< begin 43y = 43 \ x = 3y+2 end right.> Rightarrow <left< begin x = 5 \ y = 1 end right.>$$
Пример 3*. Найдите решение системы уравнений:
Введём новые переменные: $ <left< begin a = frac \ b = frac end right.> $
Перепишем систему и найдём решение для новых переменных:
$$ <left< begin2a+3b = 1| times 3 \ 3a-5b = 11 | times 2 end right.> Rightarrow (-) <left< begin 6a+9b = 3 \ 6a-10b = 22 end right.> Rightarrow <left< begin 19b = -19 \ a = frac end right.> Rightarrow <left< begin a = 2 \ b = -1 end right.> $$
Видео:Решение систем уравнений методом сложенияСкачать
Разработка урока по алгебре на тему «Решение систем уравнений методом алгебраического сложения» (7 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Тема урока: «Решение систем линейных уравнений методом алгебраического сложения»
Цели урока: познакомить обучающихся с методом решения систем уравнений методом алгебраического сложения;
Развивать память, речь, наблюдательность, подмечать закономерность, обобщать, проводить логическое мышление, суждения по аналогии, умение работать с учебником.
Воспитание дисциплины, аккуратности, настойчивости, ответственного отношения к учёбе, умение контролировать свою деятельность.
Оборудование: ноутбук, проектор, доска.
Здравствуйте, ребята! Сегодня у нас на уроке будут присутствовать гости. Поприветствуйте их. Садитесь.
Учитель: Любой человек, который начинает какое-то новое дело, обычно задумывается над тем, что он хочет получить в результате, чего достичь. Давайте и мы подумаем, чего мы сегодня должны достичь на уроке?
Ученик: Познакомиться с новым методом решения систем. Научиться решать системы линейных уравнений методом алгебраического сложения.
Слайд 2 . Девизом нашего урока будут слова «Математику нельзя изучать,
наблюдая как это делает сосед». А.Нивен.
Слайд 3. Учитель: Ничего нового не бывает без старого. Давайте ответим на вопросы.
2. Ответить на вопросы
1. Что называют решением системы уравнений? (пару значений (х;у), которая является решением и первого и второго уравнений системы)
2. Сколько решений может иметь система двух линейных уравнений с двумя неизвестными? ( 1 решение, бесконечно много решений или не иметь решения)
3. Как называется система, если она не имеет решений? (система несовместна – прямые параллельны)
4. Как называется система, если она имеет бесконечно много решений (неопределенна – прямые совпадают)
5. Какие методы решения систем уравнений вам известны?
6. Сформулируйте алгоритм решения систем уравнений методом подстановки. — Слайд 5
Решить систему методом подстановки
у-х=30,
1 ученик выполняет на интерактивной доске.
Решим систему способом подстановки, при этом ответим на вопросы:
1. Что нужно сделать? Выразить одну переменную через другую, например, х=80+2у.
2. Подставить полученное выражение в первое уравнение:
3. Решим полученное уравнение: 4у-80-2у=30, 2у=110, у=55.
4. Подставим найденное значение переменной в выражение, полученное в 1 и найдем х. х=80+ 2*55, х=190.
Изучение нового материала
Учитель: А теперь проанализируем, для чего мы выражали одну переменную через другую и подставляли полученный результат в первое уравнение?
Ученик: Чтобы получить уравнение с одной переменной.
Учитель: Правильно, чтобы исключить одну переменную. Но её можно исключить и значительно проще – достаточно сложить оба уравнения системы.
Затем найденное значение переменной подставить в любое уравнение системы и найти значение другой переменной.
Рассмотрим еще один пример.
Рассмотрим систему, где сложение уравнений на первом этапе
не позволяет исключить ни одной переменной.
обратите внимание, коэффициент перед х (1 уравнение) =4,
коэффициент перед х (2 уравнение), =5 , найдем для этих двух чисел наименьшее общее кратное число — это 20 значит,
умножим левую и правую часть 1-го уравнения на 5 , а второго уравнения на 4:
теперь мы можем вычесть второе уравнение из первого,
вычтем левую часть 2-го уравнения из левой части 1-го уравнения,
приравняв результат разности соответствующих правых частей,
подставим полученное значение y = 5 в любое уравнение системы,
например в 1-ое,
Учитель: Теперь я думаю, что вы сможете сформулировать алгоритм метода алгебраического сложения (учащиеся формулируют, учитель корректирует)
Первичное закрепление в устной речи
Работа со слайдом: учащиеся читают алгоритм.
Этап первичной проверки знаний
1. Решить систему методом алгебраического сложения
2. Работа с учебником
Этап проверки усвоения нового материала
Выполнение самостоятельной работы по карточкам с последующей самопроверкой
Способом сложения решите систему линейных уравнений:
Самостоятельная работа (для слабых обучающихся)
Способом сложения решите систему линейных уравнений:
Видео:Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2Скачать
Системы уравнений
Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:
x — 4y = 2 | |
3x — 2y = 16 |
Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.
Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.
Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать
Способ подстановки
Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.
Рассмотрим решение системы уравнений:
x — 4y = 2 | |
3x — 2y = 16 |
Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:
Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:
3x | — 2y = 16; |
3( 2 + 4y ) | — 2y = 16. |
Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.
3(2 + 4y) — 2y = 16; |
6 + 12y — 2y = 16; |
6 + 10y = 16; |
10y = 16 — 6; |
10y = 10; |
y = 10 : 10; |
y = 1. |
Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:
x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Способ сравнения
Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.
Например, для решение системы:
x — 4y = 2 | |
3x — 2y = 16 |
найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):
x — 4y = 2 | 3x — 2y = 16 |
-4y = 2 — x | -2y = 16 — 3x |
y = (2 — x) : — 4 | y = (16 — 3x) : -2 |
Составляем из полученных выражений уравнение:
2 — x | = | 16 — 3x |
-4 | -2 |
Решаем уравнение, чтобы узнать значение x:
| ||||||
2 — x = 32 — 6x | ||||||
—x + 6x = 32 — 2 | ||||||
5x = 30 | ||||||
x = 30 : 5 | ||||||
x = 6 |
Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:
x — 4y = 2 | 3x — 2y = 16 |
6 — 4y = 2 | 3 · 6 — 2y = 16 |
-4y = 2 — 6 | -2y = 16 — 18 |
-4y = -4 | -2y = -2 |
y = 1 | y = 1 |
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Способ сложения или вычитания
Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.
x — 4y = 2 | |
3x — 2y = 16 |
Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:
x — 4y = 2 | |
-6x + 4y = -32 |
Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:
+ | x — 4y = 2 |
-6x + 4y = -32 | |
-5x = -30 |
Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.
Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.
Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:
(x — 4y) · 3 = 2 · 3
3x — 12y = 6 | |
3x — 2y = 16 |
Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:
— | 3x — 12y = 6 |
3x — 2y = 16 | |
-10y = -10 |
Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:
3x — 2y = 16 |
3x — 2 · 1 = 16 |
3x — 2 = 16 |
3x = 16 + 2 |
3x = 18 |
x = 18 : 3 |
x = 6 |
Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:
Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.
💥 Видео
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Решение систем уравнений методом сложенияСкачать
Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.Скачать
Решение систем уравнений методом подстановкиСкачать
Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать
Алгебра 7 Метод алгебраического сложенияСкачать
Решение системы уравнений способом алгебраического сложения. Основы способа. План решения. Алгебра 7Скачать
Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравненийСкачать
Метод алгебраического сложения 7 классСкачать
СИСТЕМЫ УРАВНЕНИЙ В ЕГЭ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать
МЕТОД СЛОЖЕНИЯ | 7 класс алгебра | решение систем уравненийСкачать
Системы линейных уравнений. Метод алгебраического сложения. часть 1. Алгебра 7 классСкачать