- Лаборатория автоматизации и цифровой обработки сигналов
- TensorFlow. Решение систем нелинейных уравнений
- Идея решения
- Пример решения задачи
- Инициализация переменных (начальных условий)
- Построение графа системы нелинейных уравнений
- Поиск одиночного решения
- Численные методы решения систем нелинейных уравнений
- Введение
- Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений
- Методы решения систем нелинейных уравнений
- Выбор модельной функции
- Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней
- Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона
- Как решить пару нелинейных уравнений с помощью Python?
- 7 ответов
- 🎥 Видео
Видео:FreeDy010 Решение Системы нелинейных уравнений scipy sympyСкачать
Лаборатория автоматизации и цифровой обработки сигналов
Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать
TensorFlow. Решение систем нелинейных уравнений
В прошлой статье мы рассмотрели, как можно решать системы линейных алгебраических уравнений, однако возможности TensorFlow этим не ограничиваются. Несмотря на то, что в явном виде библиотека не содержит инструментария для решения нелинейных систем, в ней есть множество инструментов для решения оптимизационных задач, а численное решение сиcтемы уравнений сводится как раз к такой задаче.
Видео:Решение n го нелинейных алгебраических уравнений в PythonСкачать
Идея решения
Для получения решения необходимо выполнить следующие действия:
- Определить область поиска решений/сетку начальных условий
- Построение графа, реализующего систему
- Выбрать начальные условия
- Решить оптимизационную задачу
- Перейти на п.3, если не найдены все решения/не перебраны все выбранные начальные условия
- Объединить эквивалентные решения
- Profit
В целом, как видно алгоритм не сложный, однако позволяет решать системы практически любой сложности.
Видео:Решение нелинейного уравнения методом простых итераций (программа)Скачать
Пример решения задачи
Для большей ясности изложения решения, рассмотрим его на примере следующей системы:
[
begin
x^2 — 2y^2 — xy + 2x — y + 1 = 0 \
2x^2 — y^2 +xy + 3y — 5 = 0
end
]
Инициализация переменных (начальных условий)
Импортируем пакет tensorflow
Создаем интерактивную сессию
Далее объявляем инициализаторы. Одним из простейших вариантов является использование случайного равномерного распределения для инициализации переменных.
Теперь создаем переменные и передаем им объект инициализатора
Запустим для демонстрации 5 раз и выведем начальные значения переменных. Для запуска выполняем инициализацию всех переменных sess.run(tf.global_variables_initializer()) и вычисление начальных значений sess.run([x,y])
Заметим, что вывод, скорее всего, будет другой, так как значения инициализируются случайным образом.
Построение графа системы нелинейных уравнений
Следующим шагом является создание графа, реализующего левую часть системы (в правой части должны быть 0). Граф формируется на базе созданных ранее переменных (x) и (y). При необходимости использования математических функций, их можно найти в пакете tf.math, например, квадратный корень.
Так как в нашем случае использование функций необязательно, можно использовать обычные операторы умножения, сложения и др., предусмотрительно уже перегруженные для тензоров.
Выведем значения уравнений при последних значениях переменных, заданных ранее:
Поиск одиночного решения
Теперь можно перейти к процессу поиска решения системы уравнений. По определению, необходимо, чтобы значений выражений левых частей (в нашем случае eq1 и eq2) были равны 0, а на практике имели минимальное отклонение от 0.
Первым делом необходимо задать функцию потерь (E) и выбрать тип оптимизатора. Будем использовать среднеквадратичное отклонение в качестве функции потери и градиентный спуск в качестве оптимизатора.
Зададим (epsilon) меньше которого должна быть ошибка решения (E Запись опубликована 04.12.2018 автором Александр Синица в рубрике TensorFlow.
Видео:Решение нелинейных уравненийСкачать
Численные методы решения систем нелинейных уравнений
Введение
Многие прикладные задачи приводят к необходимости нахождения общего решения системы нелинейных уравнений. Общего аналитического решения системы нелинейных уравнений не найдено. Существуют лишь численные методы.
Следует отметить интересный факт о том, что любая система уравнений над действительными числами может быть представлена одним равносильным уравнением, если взять все уравнения в форме , возвести их в квадрат и сложить.
Для численного решения применяются итерационные методы последовательных приближений (простой итерации) и метод Ньютона в различных модификациях. Итерационные процессы естественным образом обобщаются на случай системы нелинейных уравнений вида:
(1)
Обозначим через вектор неизвестных и определим вектор-функцию Тогда система (1) записывается в виде уравнения:
(2)
Теперь вернёмся к всеми любимому Python и отметим его первенство среди языков программирования, которые хотят изучать [1].
Этот факт является дополнительным стимулом рассмотрения числительных методов именно на Python. Однако, среди любителей Python бытует мнение, что специальные библиотечные функции, такие как scipy.optimize.root, spsolve_trianular, newton_krylov, являются самым лучшим выбором для решения задач численными методами.
С этим трудно не согласится хотя бы потому, что в том числе и разнообразие модулей подняло Python на вершину популярности. Однако, существуют случаи, когда даже при поверхностном рассмотрении использование прямых известных методов без применения специальных функций библиотеки SciPy тоже дают неплохие результаты. Иными словами, новое- это хорошо забытое старое.
Так, в публикации [2], на основании проведенных вычислительных экспериментов, доказано, что библиотечная функция newton_krylov, предназначенная для решения больших систем нелинейных уравнений, имеет в два раза меньшее быстродействие, чем алгоритм TSLS+WD
(two-step least squares), реализованный средствами библиотеки NumPy.
Целью настоящей публикации является сравнение по числу итераций, быстродействию, а главное, по результату решения модельной задачи в виде системы из ста нелинейных алгебраических уравнений при помощи библиотечной функции scipy.optimize.root и методом Ньютона, реализованного средствами библиотеки NumPy.
Возможности решателя scipy.optimize.root для численного решения систем алгебраических нелинейных уравнений
Библиотечная функция scipy.optimize.root выбрана в качестве базы сравнения, потому что имеет обширную библиотеку методов, пригодных для сравнительного анализа.
scipy.optimize.root(fun, x0, args=(), method=’hybr’, jac=None, tol=None,callback=None, ptions=None)
fun — Векторная функция для поиска корня.
x0 –Начальные условия поиска корней
method:
hybr -используется модификация Пауэлл гибридный метод;
lm – решает системы нелинейных уравнений методом наименьших квадратов.
Как следует из документации [3] методы broyden1, broyden2, anderson, linearmixing, diagbroyden, excitingmixing, krylov являются точными методами Ньютона. Остальные параметры являются «не обязательными» и с ними можно ознакомится в документации.
Методы решения систем нелинейных уравнений
Приведенный далее материал действительно можно прочитать в литературе, например в [4], но я уважаю своего читателя и для его удобства приведу вывод метода по возможности в сокращенном виде. Те, кто не любит формулы, этот раздел пропускают.
В методе Ньютона новое приближение для решения системы уравнений (2) определяется из решения системы линейных уравнений:
(3)
Определим матрицу Якоби:
(4)
Запишем(3) в виде:
(5)
Многие одношаговые методы для приближенного решения (2) по аналогии с двухслойными итерационными методами для решения систем линейных алгебраических уравнений можно записать в виде:
(6)
где — итерационные параметры, a — квадратная матрица n х n, имеющая обратную.
При использовании записи (6) метод Ньютона (5) соответствует выбору:
Система линейных уравнений (5) для нахождения нового приближения может решаться итерационно. В этом случае мы имеем двухступенчатый итерационный процесс с внешними и внутренними итерациями. Например, внешний итерационный процесс может осуществляться по методу Ньютона, а внутренние итерации — на основе итерационного метода Зейделя
При решении систем нелинейных уравнений можно использовать прямые аналоги стандартных итерационных методов, которые применяются для решения систем линейных уравнений. Нелинейный метод Зейделя применительно к решению (2) дает:
(7)
В этом случае каждую компоненту нового приближения из решения нелинейного уравнения, можно получить на основе метода простой итерации и метода Ньютона в различных модификациях. Тем самым снова приходим к двухступенчатому итерационному методу, в котором внешние итерации проводятся в соответствии с методом Зейделя, а внутренние — с методом Ньютона.
Основные вычислительные сложности применения метода Ньютона для приближенного решения систем нелинейных уравнений связаны с необходимостью решения линейной системы уравнений с матрицей Якоби на каждой итерации, причем от итерации к итерации эта матрица меняется. В модифицированном методе Ньютона матрица Якоби обращается только один раз:
(8)
Выбор модельной функции
Такой выбор не является простой задачей, поскольку при увеличении числа уравнений в системе в соответствии с ростом числа переменных результат решения не должен меняться, поскольку в противном случае невозможно отследить правильность решения системы уравнений при сравнении двух методов. Привожу следующее решение для модельной функции:
Функция f создаёт систему из n нелинейных уравнений, решение которой не зависит от числа уравнений и для каждой из n переменных равно единице.
Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью библиотечной функции optimize.root для разных методов отыскания корней
Только один из методов, приведенных в документации [3] прошёл тестирование по результату решения модельной функции, это метод ‘krylov’.
Решение для n=100:
Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Krylov method iteration = 4219
Optimize root time 7.239 seconds:
Вывод: С увеличением числа уравнений вдвое заметно появление ошибок в решении. При дальнейшем увеличении n решение становится не приемлемым, что возможно из-за автоматической адаптации к шагу, эта же причина резкого падения быстродействия. Но это только моё предположение.
Программа для тестирования на модельной функции c результатами решения системы алгебраических нелинейных уравнений с помощью программы написанной на Python 3 с учётом соотношений (1)-(8) для отыскания корней по модифицированному методу Ньютона
Решение для n=100:
Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1.]
Newton iteration = 13
Newton method time 0.496 seconds
Решение для n=200:
Solution:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
Newton iteration = 14
Newton method time 1.869 seconds
Чтобы убедиться в том, что программа действительно решает систему, перепишем модельную функцию для ухода от корня со значением 1 в виде:
Получим:
Solution:
[ 0.96472166 0.87777036 0.48175823 -0.26190496 -0.63693762 0.49232062
-1.31649896 0.6865098 0.89609091 0.98509235]
Newton iteration = 16
Newton method time 0.046 seconds
Вывод: Программа работает и при изменении модельной функции.
Теперь вернёмся к начальной модельной функции и проверим более широкий диапазон для n, например в 2 и 500.
n=2
Solution:
[1. 1.]
Newton iteration = 6
Newton method time 0.048 seconds
n=500
Видео:Решения системы линейных уравнений на Python (Sympy).Скачать
Как решить пару нелинейных уравнений с помощью Python?
каков (лучший) способ решить a пара нелинейных уравнений с использованием Python. (Numpy, Scipy или Sympy)
фрагмент кода, который решает вышеуказанную пару, будет отличным
Видео:Решение 1 го нелинейного алгебраического уравнения в PythonСкачать
7 ответов
для численного решения, вы можете использовать fsolve:
Если вы предпочитаете sympy вы можете использовать nsolve.
первый аргумент-это список уравнений, второй-список переменных, а третий-начальная догадка.
попробуйте этот, я уверяю вас, что он будет работать отлично.
к вашему сведению. как упоминалось выше, вы также можете использовать «приближение Бройдена», заменив «fsolve» на «broyden1». Это работает. Я сделал это.
Я точно не знаю, как работает приближение Бройдена, но это заняло 0.02 s.
и я рекомендую вам не использовать функции Sympy
вы можете использовать пакет openopt и его метод NLP. Он имеет много алгоритмов динамического программирования для решения нелинейных алгебраических уравнений, состоящих из:
goldenSection, scipy_fminbound, scipy_bfgs, scipy_cg, scipy_ncg, amsg2p, scipy_lbfgsb, scipy_tnc, bobyqa, ralg, ipopt, scipy_slsqp, scipy_cobyla, lincher, algencan, который вы можете выбрать.
Некоторые из последних алгоритмов могут решить ограниченную задачу нелинейного программирования. Итак, вы можете представить свою систему уравнения для openopt.НЛП () С такой функцией:
lambda x: x[0] + x[1]**2 — 4, np.exp(x[0]) + x[0]*x[1]
Я получил метод Бройдена для работы для связанных нелинейных уравнений (обычно с полиномами и экспонентами) в IDL, но я не пробовал его в Python:
scipy.оптимизировать.broyden1
найти корни функции, используя первый аппроксимация Якобиана Бройдена по.
этот метод также известен как»хороший метод Бройдена».
🎥 Видео
Численные методы (1 урок)(Решение нелинейных уравнений. Метод дихотомии. Python)Скачать
Использование библиотеки SymPy для работы с системами уравнений в PythonСкачать
После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать
Решение нелинейного уравнения методом Ньютона (касательных) (программа)Скачать
СЛАУ в PythonСкачать
Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать
МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать
Решение нелинейного уравнения методом половинного деления (программа)Скачать
1 3 Решение нелинейных уравнений методом простых итерацийСкачать
Метод простых итераций пример решения нелинейных уравненийСкачать
Система НЕЛИНЕЙНЫХ уравнений ★ Как решать ★ Быстрый способ ★ Решите систему x^3+y^3=65; yx^2+xy^2=20Скачать
Решение систем линейных матричных уравнений через формулы Крамера в PythonСкачать
10 Численные методы решения нелинейных уравненийСкачать