Систем линейных уравнений метод последовательных приближений

Метод итераций решения системы уравнений. Пример решения

Решение получаем с помощью калькулятора Решение СЛАУ методом итераций .

Видео:5. Метод последовательных приближенийСкачать

5. Метод последовательных приближений

Достаточное условие сходимости метода простых итераций

Прежде чем применять метод итераций, необходимо переставить строки исходной системы таким образом, чтобы на диагонали стояли наибольшие по модулю коэффициенты матрицы. Если при этом условие все таки не выполняется, то иногда удается обеспечить сходимость метода с помощью следующего метода.
Пусть дана система Ax = b. Преобразуем ее к виду: x= Qx + c
где Q = E — D•A, c = D•b
Здесь D — некоторая матрица. Нам необходимо подобрать такую матрицу D, чтобы выполнялось условие |Q| 0 =β, тогда:
x 1 =b — a x 0
x 2 =b — a x 1
.
x k+1 =b — a x k
Для нашей задачи достаточное условие сходимости выполняется.

102-1
-2-6-1
1-312

Приведем к виду:
x1=0.5-(0.2x2-0.1x3)
x2=-4.07-(0.33x1+0.17x3)
x3=3-(0.0833x1-0.25x2)
Покажем вычисления на примере нескольких итераций.
N=1
x1=0.5 — 0 • 0.2 — 0 • (-0.1)=0.5
x2=-4.07 — 0 • 0.33 — 0 • 0.17=-4.07
x3=3 — 0 • 0.0833 — 0 • (-0.25)=3
N=2
x1=0.5 — (-4.07) • 0.2 — 3 • (-0.1)=1.61
x2=-4.07 — 0.5 • 0.33 — 3 • 0.17=-4.74
x3=3 — 0.5 • 0.0833 — (-4.07) • (-0.25)=1.94
N=3
x1=0.5 — (-4.74) • 0.2 — 1.94 • (-0.1)=1.64
x2=-4.07 — 1.61 • 0.33 — 1.94 • 0.17=-4.93
x3=3 — 1.61 • 0.0833 — (-4.74) • (-0.25)=1.68
Остальные расчеты сведем в таблицу.

Nx1x2x3e1e2e3
0000
10.5-4.0730.54.073
21.61-4.741.941.110.67-1.06
31.64-4.931.680.02740.19-0.26
41.65-4.91.630.013-0.0341-0.051
51.64-4.891.64-0.0119-0.004160.00744
61.64-4.891.64-8.8E-5-0.002730.00203
71.64-4.891.64-0.0003430.000310.000691

Ответ: x1=1.64, x2=-4.89, x3=1.64

Пример №2 . Решить систему уравнений Ax = b с точностью 0.05 методами: 1) простой итерации; 2) Зейделя. Указание. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.

Видео:Метод итераций (последовательных приближений)Скачать

Метод итераций (последовательных приближений)

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать

2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Видео:Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать

Решение систем линейных уравнений, урок 5/5. Итерационные методы

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Видео:Системы линейных уравнений, урок 1/5. Обзор методов решенияСкачать

Системы линейных уравнений, урок 1/5. Обзор методов решения

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Видео:Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

Видео:Решаем диффуры методом последовательных приближенийСкачать

Решаем диффуры методом последовательных приближений

Метод простой итерации для решения систем линейных уравнений (СЛАУ)

Метод простой итерации, называемый также методом последовательного приближения, — это математический алгоритм нахождения значения неизвестной величины путем постепенного ее уточнения. Суть этого метода в том, что, как видно из названия, постепенно выражая из начального приближения последующие, получают все более уточненные результаты. Этот метод используется для поиска значения переменной в заданной функции, а также при решении систем уравнений, как линейных, так и нелинейных.

Систем линейных уравнений метод последовательных приближений

Рассмотрим, как данный метод реализуется при решении СЛАУ. Метод простой итерации имеет следующий алгоритм:

1. Проверка выполнения условия сходимости в исходной матрице. Теорема о сходимости: если исходная матрица системы имеет диагональное преобладание (т.е, в каждой строке элементы главной диагонали должны быть больше по модулю, чем сумма элементов побочных диагоналей по модулю), то метод простых итераций — сходящийся.

2. Матрица исходной системы не всегда имеет диагональное преобладание. В таких случаях систему можно преобразовать. Уравнения, удовлетворяющие условию сходимости, оставляют нетронутыми, а с неудовлетворяющими составляют линейные комбинации, т.е. умножают, вычитают, складывают уравнения между собой до получения нужного результата.

Если в полученной системе на главной диагонали находятся неудобные коэффициенты, то к обеим частям такого уравнения прибавляют слагаемые вида сi*xi, знаки которых должны совпадать со знаками диагональных элементов.

3. Преобразование полученной системы к нормальному виду:

Это можно сделать множеством способов, например, так: из первого уравнения выразить х1 через другие неизвестные, из второго- х2, из третьего- х3 и т.д. При этом используем формулы:

i= bi/aii
Следует снова убедиться, что полученная система нормального вида соответствует условию сходимости:

∑ (j=1) |αij|≤ 1, при этом i= 1,2. n

4. Начинаем применять, собственно, сам метод последовательных приближений.

x ( 0) — начальное приближение, выразим через него х ( 1) , далее через х ( 1) выразим х ( 2) . Общая формула а матричном виде выглядит так:

Вычисляем, пока не достигнем требуемой точности:

Итак, давайте разберем на практике метод простой итерации. Пример:
Решить СЛАУ:

4,5×1-1.7×2+3.5×3=2
3.1×1+2.3×2-1.1×3=1
1.8×1+2.5×2+4.7×3=4 с точностью ε=10 -3

Посмотрим, преобладают ли по модулю диагональные элементы.

Мы видим что условию сходимости удовлетворяет лишь третье уравнение. Первое и второе преобразуем, к первому уравнению прибавим второе:

Систем линейных уравнений метод последовательных приближений

Из третьего вычтем первое:

Мы преобразовали исходную систему в равноценную:

Теперь приведем систему к нормальному виду:

Проверяем сходимость итерационного процесса:

0.0789+0.3158=0,3947 ≤ 1
0.6429+0.2857=0.9286 ≤ 1
0.383+ 0.5319= 0.9149 ≤ 1 , т.е. условие выполняется.

0,3947
Начальное приближение х ( 0) = 0,4762
0,8511

Подставляем данные значения в уравнение нормального вида, получаем следующие значения:

0,08835
x (1) = 0,486793
0,446639

Подставляем новые значения, получаем:

0,215243
x (2) = 0,405396
0,558336

Продолжаем вычисления до того момента, пока не приблизимся к значениям, удовлетворяющим заданному условию.

Проверим правильность полученных результатов:

Результаты, полученные при подстановке найденных значений в исходные уравнения, полностью удовлетворяют условиям уравнения.

Как мы видим, метод простой итерации дает довольно точные результаты, однако для решения этого уравнения нам пришлось потратить много времени и проделать громоздкие вычисления.

💡 Видео

Метод последовательного приближения или от простого к сложномуСкачать

Метод последовательного приближения или от простого к сложному

Решение матричных уравненийСкачать

Решение матричных уравнений

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математика

Метод Пикара последовательных приближений для решения дифференциальных уравненийСкачать

Метод Пикара последовательных приближений для решения дифференциальных уравнений

6 способов в одном видеоСкачать

6 способов в одном видео

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Быстрое решение системы линейных уравнений в Excel.Скачать

Быстрое решение системы линейных уравнений в Excel.

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения
Поделиться или сохранить к себе: