Решение получаем с помощью калькулятора Решение СЛАУ методом итераций .
- Достаточное условие сходимости метода простых итераций
- Итерационные методы решения системы линейных алгебраических уравнений
- Общие сведения об итерационных методах или методе простой итерации
- Метод Якоби
- Метод Зейделя
- Метод простой итерации
- Метод простой итерации для решения систем линейных уравнений (СЛАУ)
- 💡 Видео
Видео:5. Метод последовательных приближенийСкачать
Достаточное условие сходимости метода простых итераций
Прежде чем применять метод итераций, необходимо переставить строки исходной системы таким образом, чтобы на диагонали стояли наибольшие по модулю коэффициенты матрицы. Если при этом условие все таки не выполняется, то иногда удается обеспечить сходимость метода с помощью следующего метода.
Пусть дана система Ax = b. Преобразуем ее к виду: x= Qx + c
где Q = E — D•A, c = D•b
Здесь D — некоторая матрица. Нам необходимо подобрать такую матрицу D, чтобы выполнялось условие |Q| 0 =β, тогда:
x 1 =b — a x 0
x 2 =b — a x 1
.
x k+1 =b — a x k
Для нашей задачи достаточное условие сходимости выполняется.
10 | 2 | -1 |
-2 | -6 | -1 |
1 | -3 | 12 |
Приведем к виду:
x1=0.5-(0.2x2-0.1x3)
x2=-4.07-(0.33x1+0.17x3)
x3=3-(0.0833x1-0.25x2)
Покажем вычисления на примере нескольких итераций.
N=1
x1=0.5 — 0 • 0.2 — 0 • (-0.1)=0.5
x2=-4.07 — 0 • 0.33 — 0 • 0.17=-4.07
x3=3 — 0 • 0.0833 — 0 • (-0.25)=3
N=2
x1=0.5 — (-4.07) • 0.2 — 3 • (-0.1)=1.61
x2=-4.07 — 0.5 • 0.33 — 3 • 0.17=-4.74
x3=3 — 0.5 • 0.0833 — (-4.07) • (-0.25)=1.94
N=3
x1=0.5 — (-4.74) • 0.2 — 1.94 • (-0.1)=1.64
x2=-4.07 — 1.61 • 0.33 — 1.94 • 0.17=-4.93
x3=3 — 1.61 • 0.0833 — (-4.74) • (-0.25)=1.68
Остальные расчеты сведем в таблицу.
N | x1 | x2 | x3 | e1 | e2 | e3 |
0 | 0 | 0 | 0 | |||
1 | 0.5 | -4.07 | 3 | 0.5 | 4.07 | 3 |
2 | 1.61 | -4.74 | 1.94 | 1.11 | 0.67 | -1.06 |
3 | 1.64 | -4.93 | 1.68 | 0.0274 | 0.19 | -0.26 |
4 | 1.65 | -4.9 | 1.63 | 0.013 | -0.0341 | -0.051 |
5 | 1.64 | -4.89 | 1.64 | -0.0119 | -0.00416 | 0.00744 |
6 | 1.64 | -4.89 | 1.64 | -8.8E-5 | -0.00273 | 0.00203 |
7 | 1.64 | -4.89 | 1.64 | -0.000343 | 0.00031 | 0.000691 |
Ответ: x1=1.64, x2=-4.89, x3=1.64
Пример №2 . Решить систему уравнений Ax = b с точностью 0.05 методами: 1) простой итерации; 2) Зейделя. Указание. Для обеспечения выполнения достаточного условия сходимости воспользоваться перестановкой строк в исходной системе уравнений.
Видео:Метод итераций (последовательных приближений)Скачать
Итерационные методы решения системы линейных алгебраических уравнений
В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.
Видео:2.2 Итерационные методы решения СЛАУ (Якоби, Зейделя, релаксации)Скачать
Общие сведения об итерационных методах или методе простой итерации
Метод итерации — это численный и приближенный метод решения СЛАУ.
Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .
Рассмотрим систему A x = b .
Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.
Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.
Видео:Решение систем линейных уравнений, урок 5/5. Итерационные методыСкачать
Метод Якоби
Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.
Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:
b i j = — a i j / a i i , i , j = 1 , 2 . . . , n
Элементы (компоненты) вектора d вычисляются по следующей формуле:
d i = b i / a i i , i = 1 , 2 , . . . , n
Расчетная формула метода простой итерации:
x ( n + 1 ) = B x ( x ) + d
Матричная запись (координатная):
x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b
Критерий окончания в методе Якоби:
x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε
В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:
x ( n + 1 ) — x ( n ) ε
Решить СЛАУ методом Якоби:
10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10
Необходимо решить систему с показателем точности ε = 10 — 3 .
Приводим СЛАУ к удобному виду для итерации:
x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1
Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.
В таком случае, первая итерация имеет следующий внешний вид:
x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01
Аналогичным способом вычисляются приближения к решению:
x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111
Находим норму матрицы В , для этого используем норму B ∞ .
Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:
x ( n + 1 ) — x ( n ) ε
Далее вычисляем нормы разности векторов:
x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .
Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.
x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .
Видео:Системы линейных уравнений, урок 1/5. Обзор методов решенияСкачать
Метод Зейделя
Метод Зейделя — метод является модификацией метода Якоби.
Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.
x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +
+ . . . + b i m x m ( n ) + d i
За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.
Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.
Решим 3 системы уравнений:
2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1
Приведем системы к удобному для итерации виду:
x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .
Отличительная особенность, условие сходимости выполнено только для первой системы:
Вычисляем 3 первых приближения к каждому решению:
1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109
Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.
2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129
Итерационный процесс разошелся.
Решение: x 1 = 1 , x 2 = 2
3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2
Итерационный процесс зациклился.
Решение: x 1 = 1 , x 1 = 2
Видео:Метод простой итерации Пример РешенияСкачать
Метод простой итерации
Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:
x = x — τ ( A x — b ) , τ — итерационный параметр.
Расчетная формула имеет следующий внешний вид:
x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .
Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .
Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .
τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .
Видео:Решаем диффуры методом последовательных приближенийСкачать
Метод простой итерации для решения систем линейных уравнений (СЛАУ)
Метод простой итерации, называемый также методом последовательного приближения, — это математический алгоритм нахождения значения неизвестной величины путем постепенного ее уточнения. Суть этого метода в том, что, как видно из названия, постепенно выражая из начального приближения последующие, получают все более уточненные результаты. Этот метод используется для поиска значения переменной в заданной функции, а также при решении систем уравнений, как линейных, так и нелинейных.
Рассмотрим, как данный метод реализуется при решении СЛАУ. Метод простой итерации имеет следующий алгоритм:
1. Проверка выполнения условия сходимости в исходной матрице. Теорема о сходимости: если исходная матрица системы имеет диагональное преобладание (т.е, в каждой строке элементы главной диагонали должны быть больше по модулю, чем сумма элементов побочных диагоналей по модулю), то метод простых итераций — сходящийся.
2. Матрица исходной системы не всегда имеет диагональное преобладание. В таких случаях систему можно преобразовать. Уравнения, удовлетворяющие условию сходимости, оставляют нетронутыми, а с неудовлетворяющими составляют линейные комбинации, т.е. умножают, вычитают, складывают уравнения между собой до получения нужного результата.
Если в полученной системе на главной диагонали находятся неудобные коэффициенты, то к обеим частям такого уравнения прибавляют слагаемые вида сi*xi, знаки которых должны совпадать со знаками диагональных элементов.
3. Преобразование полученной системы к нормальному виду:
Это можно сделать множеством способов, например, так: из первого уравнения выразить х1 через другие неизвестные, из второго- х2, из третьего- х3 и т.д. При этом используем формулы:
i= bi/aii
Следует снова убедиться, что полученная система нормального вида соответствует условию сходимости:
∑ (j=1) |αij|≤ 1, при этом i= 1,2. n
4. Начинаем применять, собственно, сам метод последовательных приближений.
x ( 0) — начальное приближение, выразим через него х ( 1) , далее через х ( 1) выразим х ( 2) . Общая формула а матричном виде выглядит так:
Вычисляем, пока не достигнем требуемой точности:
Итак, давайте разберем на практике метод простой итерации. Пример:
Решить СЛАУ:
4,5×1-1.7×2+3.5×3=2
3.1×1+2.3×2-1.1×3=1
1.8×1+2.5×2+4.7×3=4 с точностью ε=10 -3
Посмотрим, преобладают ли по модулю диагональные элементы.
Мы видим что условию сходимости удовлетворяет лишь третье уравнение. Первое и второе преобразуем, к первому уравнению прибавим второе:
Из третьего вычтем первое:
Мы преобразовали исходную систему в равноценную:
Теперь приведем систему к нормальному виду:
Проверяем сходимость итерационного процесса:
0.0789+0.3158=0,3947 ≤ 1
0.6429+0.2857=0.9286 ≤ 1
0.383+ 0.5319= 0.9149 ≤ 1 , т.е. условие выполняется.
0,3947
Начальное приближение х ( 0) = 0,4762
0,8511
Подставляем данные значения в уравнение нормального вида, получаем следующие значения:
0,08835
x (1) = 0,486793
0,446639
Подставляем новые значения, получаем:
0,215243
x (2) = 0,405396
0,558336
Продолжаем вычисления до того момента, пока не приблизимся к значениям, удовлетворяющим заданному условию.
Проверим правильность полученных результатов:
Результаты, полученные при подстановке найденных значений в исходные уравнения, полностью удовлетворяют условиям уравнения.
Как мы видим, метод простой итерации дает довольно точные результаты, однако для решения этого уравнения нам пришлось потратить много времени и проделать громоздкие вычисления.
💡 Видео
Метод последовательного приближения или от простого к сложномуСкачать
Решение матричных уравненийСкачать
Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать
Метод Пикара последовательных приближений для решения дифференциальных уравненийСкачать
6 способов в одном видеоСкачать
Метод Гаусса решения систем линейных уравненийСкачать
Быстрое решение системы линейных уравнений в Excel.Скачать
Решение системы уравнений методом ГауссаСкачать
Математика без Ху!ни. Метод Гаусса.Скачать
ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать
Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать
Система уравнений. Метод алгебраического сложенияСкачать