Sinx siny 1 cosx cosy корень из 3 система уравнений

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Решить систему тригонометрических уравнений:

sinx — siny = 0.5
cosx + cosy = √(3)/2

Попытался выразить sinx и cosx через 0.5 + siny и √(3)/2 — cosy соответственно, возведя при этом оба уравнения в квадрат и сложив их по формуле sin^2a+cos^2a=1
(0.5 + siny)^2 + (√(3)/2 — cosy)^2 = 1, приведя подобные получил
siny — √(3)cosy + 1 = 0, а дальше ни туда и ни сюда. Есть другие способы решения или я что-то не так делаю?

Sinx siny 1 cosx cosy корень из 3 система уравнений

Все правильно делаешь, ты не заметил одну прикольную вещь. Я начну отсюда:
siny — √(3)cosy + 1 = 0
Поделим на 2:

Ничего не замечаешь?
sin (α-β) = sin (α)·cos(β) — sin(β)·cos(α)
Вместо 1/2 напиши cos60, а вместо √(3) /2 sin60 :
sin(y)·cos(60) — sin(60)·cos(y) = -1/2
Теперь по формуле это дело можно собрать, получится:
sin(y-Pi/3)=-1/2
Удачки 😉

Sinx siny 1 cosx cosy корень из 3 система уравнений

Если ответ по предмету Алгебра отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Видео:Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

Решение систем тригонометрических уравнений

Системы тригонометрических уравнений бесконечно разнообразны. При их решении используются как общие методы: подстановки, сложения, замены переменной, так и частные, связанные с особенностями преобразований тригонометрических функций.
В этом параграфе мы рассмотрим только некоторые, наиболее характерные, подходы к решению таких систем.

п.1. Системы, в которых одно из уравнений является линейным

Если одно из уравнений системы является линейным, то система решается методом подстановки.

Например:
Решим систему ( begin x+y=fracpi4\ tgx+tgy=1 end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=fracpi4-x\ tgx+tgleft(fracpi4-xright)=1 end end Решаем полученное уравнение относительно (x): begin tgx+frac=1Rightarrow frac=1-tgx end ОДЗ: (tgxne -1) begin 1-tgx=(1-tgx)(1+tgx)Rightarrow(1-tgx)(1-1-tgx)=0\ -tgx(1-tgx)=0\ begin left[ begin tgx=0\ tgx=1 end right. \ tgxne -1 end Rightarrow left[ begin tgx=0\ tgx=1 end right. Rightarrow left[ begin x_1=pi k\ x_2=fracpi4+pi k end right. end Получаем две пары решений: begin left[ begin begin x_1=pi k\ y_1=fracpi4-x=fracpi4-pi k end \ begin x_2=fracpi4+pi k\ y_2=fracpi4-left(fracpi4+pi kright)=-pi k end end right. end Ответ: (left)

п.2. Системы с независимыми уравнениями

Если уравнения системы являются независимыми, то они решаются по отдельности. При этом счетчики периодов обязательно должны быть различными (например, (k) и (n), для двух независимых уравнений).

Например:
Решим систему ( begin sin(x-y)=0\ cox(x+y)=1 end )
Уравнения независимы, решаем каждое из них, а затем методом сложения находим (x) и (y): begin begin x-y=pi k\ x+y=2pi n end Rightarrow begin 2x=pi k+2pi n\ 2y=2pi n-pi k end Rightarrow begin x=frac+pi n=fracpi2(k+2n)=fracpi2(2n+k)\ y=pi n-frac=fracpi2(2n-k) end end Ответ: (left(fracpi2(2n+k); fracpi2(2n-k)right))

п.3. Системы с произведениями тригонометрических функций

Системы с произведениями тригонометрических функций и приводимые к ним решаются методом сложения.

Например:
Решим систему ( begin sinx siny=frac<sqrt>\ cosx cosy=frac<sqrt> end )
Добавим и вычтем уравнения и используем формулы косинуса суммы и разности: begin begin cosxcosy+sinxsiny=frac<sqrt>\ cosxcosy-sinxsiny=0 end Rightarrow begin cos(x-y)=frac<sqrt>\ cos(x+y)=0 end end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти (x) и (y): begin begin x-y=pmfracpi6+2pi k\ x+y=fracpi2+pi n end Rightarrow begin 2x=pmfracpi6+fracpi2+pi(2k+n)\ 2y=fracpi2pmfracpi6+pi(n-2k) end Rightarrow begin x=pmfrac+fracpi4+fracpi2(2k+n)\ y=fracpi4pmfrac+fracpi2(n-2k) end end Получаем две пары решений: begin left[ begin begin x_1=fracpi6+fracpi2(2k+n)\ y_1=fracpi3+fracpi2(n-2k) end \ begin x_2=fracpi3+fracpi2(2k+n)\ y_2=fracpi6+fracpi2(n-2k) end end right. end Ответ: (left)

п.4. Замена переменных в системах тригонометрических уравнений

Системы двух уравнений с двумя тригонометрическими функциями легко решаются с помощью замены переменных.

Например:
Решим систему ( begin tgx-siny=4\ tg^2x+sin^2y=26 end )
Замена переменных: (a=tgx, b=siny) begin begin a-b=4\ a^2+b^2=26 end Rightarrow begin a=b+4\ (b+4)^2+b^2=26 end Rightarrow begin a=b+4\ 2b^2+8b-10=0 end Rightarrow\ Rightarrow begin a=b+4\ b^2+4b-5=0 end Rightarrow begin a=b+4\ (b+5)(b-1)=0 end Rightarrow left[ begin begin a=-1\ b=-5 end \ begin a=5\ b=1 end end right. end Переменная (b=siny) ограничена: (-1leq bleq 1).
(b=-5lt-1) не подходит. Остается вторая пара решений: (begin a=5\ b=1 end )
Возвращаемся к исходным переменным: begin begin tgx=5\ siny=1 end Rightarrow begin x=arctg5+pi k\ y=fracpi2+2pi n end end Ответ: (left(arctg5+pi k; fracpi2+2pi nright))

п.5. Примеры

Пример 1. Решите систему уравнений: a) ( begin x+y=pi\ sinx+siny=sqrt end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=pi-x\ sinx+sin(pi-x)=sqrt end end Решаем полученное уравнение относительно (x): begin sinx+sinx=sqrtRightarrow 2sinx=sqrtRightarrow sinx=frac<sqrt>Rightarrow\ Rightarrow x=(-1)^kfracpi3+pi k= left[ begin fracpi3+2pi k\ frac+2pi k end right. end Получаем две пары решений: begin left[ begin begin x=fracpi3+2pi k\ y=pi-x=pi-fracpi3-2pi k=frac-2pi k end \ begin x=frac+2pi k\ y=pi-x=pi-frac-2pi k=fracpi3-2pi k end end right. end Ответ: (left<left(fracpi3+2pi k; frac-2pi kright), left(frac+2pi k; fracpi3-2pi kright)right>)

б) ( begin sinxcosy=frac34\ cosxsiny=frac14 end )
Добавим и вычтем уравнения и используем формулы синуса суммы и разности: begin begin sinxcosy+cosxsiny=1\ sinxcosy-cosxsinyfrac12 end Rightarrow begin sin(x+y)=1\ sin(x-y)=frac12 end end Мы получили систему из двух независимых уравнений. Решаем каждое из них, и затем используем метод сложения, чтобы найти (x) и (y): begin begin x+y=fracpi2+2pi k\ x-y=(-1)^nfracpi6=pi n end Rightarrow begin 2x=fracpi2+(-1)^nfracpi6+pi(2k+n)\ 2y=fracpi2-(-1)^nfracpi6+pi(2k-n) end Rightarrow\ Rightarrow begin x=fracpi4+(-1)^nfrac+fracpi2(2k+n)\ y=fracpi4-(-1)^nfrac+fracpi2(2k-n) end end Ответ: (left(fracpi4+(-1)^nfrac+fracpi2(2k+n); fracpi4-(-1)^nfrac+fracpi2(2k-n)right))

в) ( begin cosfraccosfrac=frac12\ cosxcosy=frac14 end )
Используем формулу произведения косинусов: $$ cosxcosy=frac12(cos(x+y)+cos(x-y)) $$ Получаем: begin cosfraccosfrac=frac12left(cosleft(frac+fracright)+cosleft(frac-fracright)right)=\ =frac12(cosx+cosy)\ begin frac12(cosx+cosy)=frac12\ cosxcosy=frac14 end Rightarrow begin cosx+cosy=1\ cosxcosy=frac14 end end Замена переменных: (a=cosx, b=cosy) begin begin a+b=1\ ab=frac14 end Rightarrow begin a=1-b\ (1-b)b=frac14 end Rightarrow begin a=1-b\ b^2-b+frac14=0 end Rightarrow begin a=1-b\ left(b-frac12right)^2=0 end Rightarrow begin a=frac12\ b=frac12 end end Возвращаемся к исходным переменным: begin begin cosx=frac12\ cosy=frac12 end Rightarrow begin x=pmfracpi3+2pi k\ y=pmfracpi3+2pi n end end Получаем четыре пары решений.
Ответ: ( left< begin left(-fracpi3+2pi k; -fracpi3+2pi nright), left(fracpi3+2pi k; fracpi3+2pi nright),\ left(-fracpi3+2pi k; fracpi3+2pi nright), left(fracpi3+2pi k; -fracpi3+2pi nright) end right> )

г) ( begin x+y=frac23\ 2cos(pi x)+4cos(pi y)=3 end )
Из верхнего линейного уравнения выражаем (y) через (x) и подставляем в нижнее: begin begin y=frac23-x\ 2cos(pi x)+4cosleft(pileft(frac23-xright)right)=3 end end Решаем полученное уравнение относительно (x): begin 2cos(pi x)+4cosleft(frac-pi xright)=3\ 2cos(pi x)+4left(cosfraccospi x+sinfracsinpi xright)=3\ 2cos(pi x)+left(left(-frac12right)cospi x+frac<sqrt>sinpi xright)=3\ 2cos(pi x)-2cos(pi x)+2sqrtsinpi x=3\ sinpi x=frac<sqrt>Rightarrow pi x= left[ begin fracpi3+2pi k\ frac+2pi k end right. Rightarrow x= left[ begin frac13+2k\ frac23+2k end right. end Получаем две пары решений: begin left[ begin begin x=frac13+2k\ y=frac23-x=frac13-2k end \ begin x=frac23+2k\ y=-2k end end right. end Ответ: (left)

Пример 2*. Решите систему уравнений:
a) ( begin sqrtcosx=0\ 2sin^2x-cosleft(2y-fracpi3right)=0 end )
Первое уравнение является независимым. Решаем его, чтобы найти (x): begin begin left[ begin cos2x=0\ cosx=0 end right.\ cos2xgeq 0 end Rightarrow begin left[ begin 2x=fracpi2+pi k\ x=fracpi2+pi k end right.\ -fracpi2+2pi kleq 2xleqfracpi2+2pi k end Rightarrow begin left[ begin x=fracpi4+frac\ x=fracpi2+pi k end right.\ -fracpi4+pi kleq xleqfracpi4+pi k end end

Sinx siny 1 cosx cosy корень из 3 система уравненийСемейство решений (x=fracpi2+pi k) не подходит по требованию ОДЗ (закрашенные сектора).
Остается только: begin x=fracpi4+frac end

Подставляем полученный (x) во второе уравнение: begin 2sin^2left(fracpi4+fracright)-cosleft(2y-fracpi3right)=0 end Используем формулу понижения степени: (2sin^2x=1-cos2x) begin 2sin^2left(fracpi4+fracright)=1-cosleft(2left(fracpi4+fracright)right)=1-underbrace_=1 end Получаем: begin 1-cosleft(2y-fracpi3right)=0Rightarrow cosleft(2y-fracpi3right)=1Rightarrow 2y-fracpi3=2pi nRightarrow\ Rightarrow 2y=fracpi3+2pi nRightarrow y=fracpi6+pi n end Ответ: (left(fracpi4+frac; fracpi6+pi nright))

б) ( begin tgleft(fracpi4+xright)=2sqrtcos^3y\ tgleft(fracpi4-xright)=2sqrtsin^3y end )
Рассмотрим произведение: $$ tgleft(fracpi4+xright)cdot tgleft(fracpi4-xright)=fraccdot frac=1 $$ Умножим уравнения и получим: begin 1=8cos^3ysin^3y=(2cosysiny)^3=sin^32yRightarrow sin2y=1Rightarrow 2y=fracpi2+2pi k\ y=fracpi4+pi k end Поставляем полученный y в первое уравнение: $$ tgleft(fracpi4+xright)=2sqrtcos^3left(fracpi4+pi kright) $$ Косинус равен ±1, в зависимости от четверти, в которой находится угол (y): begin cosleft(fracpi4+pi kright)= left[ begin frac<sqrt>, y=frac+2pi k\ -frac<sqrt>, y=frac+2pi k end right. end В первом случае: $$ tgleft(fracpi4+xright)=2sqrtcdotleft(frac<sqrt>right)^3=1Rightarrowfracpi4+x=fracpi4+pi nRightarrow x=pi n $$ Во втором случае: $$ tgleft(fracpi4+xright)=2sqrtcdotleft(-frac<sqrt>right)^3=-1Rightarrowfracpi4+x=-fracpi4+pi nRightarrow x=-fracpi2+pi n $$ Получаем две пары решений: begin left[ begin begin x=pi n\ y=fracpi4+2pi k end \ begin x=-fracpi2+pi n\ y=frac+2pi k end end right. end Ответ: (left<left(pi n; fracpi4+2pi kright), left(-fracpi2+pi n; frac+2pi kright)right>)

в) begin begin sqrt=cosx\ 2sinxctgy+1=0 end end ОДЗ: ( begin 1+sinxsinygeq 0\ cosxgeq 0\ cosyne 0 end Rightarrow begin cosxgeq 0\ cosyne 0 end )
(1+sinxsinygeq 0) — это требование всегда выполняется.
Возведем первое уравнение в квадрат: begin 1+sinxsiny=cos^2xRightarrow 1-cos^2x+sinxsiny=0Rightarrow\ Rightarrow sin^2x+sinxsiny=0Rightarrow sinx(sinx+siny)=0Rightarrow left[ begin sinx=0\ sinx+siny=0 end right. end Из второго уравнения следует, что (sinx=0) никогда не является решением ((0+1ne 0)). Значит, остается (sinx+siny=0) begin begin sinx+siny=0\ 2sinxctgy+1=0 end Rightarrow begin siny=-sinx\ ctgy=-frac end Rightarrow cosy=sinycdot ctgy=frac12Rightarrow\ Rightarrow y=pm arccosfrac12+2pi k=pmfracpi3+2pi k\ sinx=-sinyRightarrow left[ begin x=y+pi=pipmfracpi3+2pi n= left[ begin frac+2pi n\ frac+2pi n end right. \ x=-y=pmfracpi3+2pi n end right. end По ОДЗ (cosxgeq 0), подходят только нижние корни.
Получаем две пары решений.
Ответ: (left)

Видео:Сложная тригонометрия cosx+cosy-cos(x+y)=3/2Скачать

Сложная тригонометрия cosx+cosy-cos(x+y)=3/2

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Калькулятор онлайн.
Решение тригонометрических уравнений.

Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение

Видео:Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)Скачать

Найдите наименьший положительный корень уравнения sin pi x/3=-(корень из 3)/2 (проф. ЕГЭ задача №6)

Немного теории.

Видео:Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математикеСкачать

Параметры, Легко Решаемые Графически | ЕГЭ 2024 по математике

Тригонометрические уравнения

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Уравнение cos(х) = а

Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.

Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a

Видео:Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

Уравнение sin(х) = а

Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.

Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а

Видео:`cosx+cosy=1/3,sinx+siny=1/4= gtsin(x+y)`Скачать

`cosx+cosy=1/3,sinx+siny=1/4= gtsin(x+y)`

Уравнение tg(х) = а

Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.

Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а

Видео:Система для продвинутыхСкачать

Система для продвинутых

Решение тригонометрических уравнений

Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.

Видео:Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать

Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.

Уравнения, сводящиеся к квадратным

Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0

Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )

Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0

Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Уравнение вида a sin(x) + b cos(x) = c

Решить уравнение 2 sin(x) + cos(x) — 2 = 0

Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем

Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3

В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):

Решить уравнение 4 sin(x) + 3 cos(x) = 5

Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:

Уравнения, решаемые разложением левой части на множители

Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.

Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0

Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0

Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0

🎦 Видео

Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать

Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синус

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

4 способа решить уравнение sinx = cosxСкачать

4 способа решить уравнение sinx = cosx

Три способа отбора корней в задании 13 ЕГЭ профильСкачать

Три способа отбора корней в задании 13 ЕГЭ профиль

Решить тригонометрические неравенства sinxСкачать

Решить тригонометрические неравенства sinx

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.
Поделиться или сохранить к себе: