Символьное решение систем уравнений в mathcad prime

Символьное решение систем уравнений в mathcad prime

В этом разделе обсуждается, как в символьном виде решать уравнения и системы уравнений. Команда Решить относительно переменной из меню Символика позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения.

В этом разделе описывается также, как в символьном виде решить систему уравнений, используя блоки решения уравнений. Для этого требуется Mathcad PLUS.

Решать уравнение символьно гораздо труднее, чем численно. Может оказаться, что в символьном виде решение не существует. Это может быть вызвано рядом причин, обсуждаемых в разделе “Ограничения символьных преобразований”.

Решение уравнения относительно переменной

Чтобы решить уравнение относительно переменной:

  • Напечайте уравнение. Убедитесь, что для выведения знака равенства использована комбинация клавиш [Ctrl]=.
  • Выделите переменную, относительно которой нужно решить уравнение, щёлкнув на ней мышью.
  • Выберите Решить относительно переменной из меню Символика

Mathcad решит уравнение относительно выделенной переменной и вставит результат в рабочий документ. Обратите внимание, что, если переменная возводилась в квадрат в первоначальном уравнении, при решении можно получить два ответа. Mathcad отображает их в виде вектора. Рисунок 20 показывает соответствующий пример.

Символьное решение систем уравнений в mathcad prime

Рисунок 20: Преобразование выражения для решения уравнения.

Можно также решать неравенство, использующее символы , Символьное решение систем уравнений в mathcad primeи Символьное решение систем уравнений в mathcad prime. Решения для неравенств будут отображаться в терминах булевых выражений Mathcad. Если имеется более одного решения, Mathcad помещает их в вектор. В Mathcad булево выражение типа x

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Решение СЛУ MathCad Prime 4 0Скачать

Решение СЛУ MathCad Prime 4 0

Символьное решение систем уравнений в mathcad prime

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Символьное решение систем уравнений в mathcad prime

Символьное решение систем уравнений в mathcad prime

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

Символьное решение систем уравнений в mathcad prime

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

Символьное решение систем уравнений в mathcad prime

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Символьное решение систем уравнений в mathcad prime

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства Символьное решение систем уравнений в mathcad primeсистема уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Символьное решение систем уравнений в mathcad prime

Пример использования блока given…find для решения системы уравнений:

Видео:MathCAD Решение системы уравненийСкачать

MathCAD  Решение системы уравнений

Урок 19. Символьные вычисления в Mathcad – ключевые слова и модификаторы

В этом уроке мы исследуем различные вариации результатов символьных вычислений с использованием ключевых слов и модификаторов. Мы будем применять их для нахождения символьного результата решения уравнений и для разложения функции в многочлен.

Решение уравнений

В качестве первого примера решим квадратичное уравнение:

Символьное решение систем уравнений в mathcad prime

Обратите внимание, что в записи используется булево равенство. Чтобы решить уравнение, щелкните по нему и вставьте оператор символьного преобразования. В результате получилось то же уравнение:

Символьное решение систем уравнений в mathcad prime

Нужно добавить ключевое слово “solve” в местозаполнителе над стрелкой:

Символьное решение систем уравнений в mathcad prime

Так как уравнение содержит четыре переменных, нужно указать, для какой именно следует решить уравнение. В нашем случае это переменная x. Для этого наберите запятую за словом “solve”. В результате появится местозаполнитель для модификатора x:

Символьное решение систем уравнений в mathcad prime

Как видно, уравнение имеет два корня.

В следующем примере мы рассмотрим кубическое уравнение. Для констант следует указать значения, так как общее решение будет слишком громоздким.

Символьное решение систем уравнений в mathcad prime

Получено три корня уравнения, два из которых являются комплексными. Комплексное решение можно подавить, используя второе ключевое слово “assume” и модификатор “real” :

Символьное решение систем уравнений в mathcad prime

Другой пример – пересечение двух окружностей одного радиуса. Точки пересечений должны удовлетворять сразу двум уравнениям. Одна окружность смещена на расстояние ? вдоль оси абсцисс.

Символьное решение систем уравнений в mathcad prime

Чтобы решить систему, запишем уравнения в вектор. Так как нужно решить и для переменной x, и для переменной y, необходимо записать два модификатора:

Символьное решение систем уравнений в mathcad prime

Ответ представлен в качестве матрицы. Здесь два решения – две строки матрицы: «иксы» – первый столбец (они равны), «игреки» — второй (они различны). Если ?>2r, решение будет комплексным.

Перед тем, как решать уравнение, упростите его, насколько можете. Но даже в этом случае решение может получиться громоздким, или оно вообще может быть не найдено.

Ключевые слова “series” и “coeffs

Mathcad может разложить функцию в ряд – с помощью ключевого слова “series”. Вы можете добавить два местозаполнителя с помощью запятых:

Символьное решение систем уравнений в mathcad prime

Главный местозаполнитель содержит ключевое слово, второй – переменную, а третий – порядок разложения. Разложение выполняется в окрестности точки 0.

Если нужно разложить, например, натуральный логарифм в окрестности точки x=1, добавьте еще один модификатор:

Символьное решение систем уравнений в mathcad prime

Можно проверить, насколько полученное разложение соответствует изначальной функции:

Символьное решение систем уравнений в mathcad prime

В Mathcad можно вычислять сумму ряда символьно:

Символьное решение систем уравнений в mathcad prime

Тесно связанно с “series” ключевое слово “coeffs”. Проиллюстрируем ее на примере разложения экспоненты:

Символьное решение систем уравнений в mathcad prime

Coeffs” дает вектор коэффициентов любого многочлена. Этот вектор начинается с низшего порядка.

Ключевые слова можно комбинировать:

Символьное решение систем уравнений в mathcad prime

Резюме

В этом уроке мы познакомились с ключевыми словами “solve”, “series” и “coeffs”:

  1. Ключевые слова вводятся над стрелкой оператора аналитического преобразования.
  2. Модификаторы следует вводить за ключевым словом через запятую.
  3. Ключевое слово “solve” решает уравнение, введенное перед ним.
  4. С помощью модификатора определите ключевому слову “solve”, для какой переменной следует решить уравнение.
  5. Вывод можно ограничить, используя модификаторы с булевыми функциями.
  6. Систему уравнений для решения с помощью “solve” следует поместить в вектор.
  7. Ключевое слово “series” может разложить функцию в ряд.
  8. Важные модификаторы для ключевого слова series:
  • переменная, по которой происходит разложение;
  • порядок разложения;
  • точка, в окрестности которой происходит разложение.
  1. Вектор коэффициентов ряда (или другого многочлена) можно найти с помощью ключевого слова “coeffs”.

🔍 Видео

Mathcad Prime. Урок 5 - Способы решения уравненийСкачать

Mathcad Prime. Урок 5 - Способы решения уравнений

Mathcad-09. Пример: уравненияСкачать

Mathcad-09. Пример: уравнения

Решение СЛАУ в пакете MathCadСкачать

Решение СЛАУ в пакете MathCad

Работа с MathCad Prime. Решение дифференциальных уравнений.Скачать

Работа с MathCad Prime. Решение дифференциальных уравнений.

Mathcad Prime (часть 2)Скачать

Mathcad Prime (часть 2)

Решение систем линейных уравнений в MathCAD 14 (31/34)Скачать

Решение систем линейных уравнений в MathCAD 14 (31/34)

Средство для решения систем уравнений в MathCAD 14 (29/34)Скачать

Средство для решения систем уравнений в MathCAD 14 (29/34)

Пример решения системы уравнений в MathCAD 14 (34/34)Скачать

Пример решения системы уравнений в MathCAD 14 (34/34)

8. MathCad. Решение систем линейных алгебраических уравненийСкачать

8. MathCad. Решение систем линейных алгебраических уравнений

MathCAD Решение уравнений с помощью функции root 1 вариантСкачать

MathCAD  Решение уравнений с помощью функции root 1 вариант

Символьные преобразования в Mathcad (Урок 4)Скачать

Символьные преобразования в Mathcad (Урок 4)

Приближенное решение систем уравнений в MathCAD 14 (30/34)Скачать

Приближенное решение систем уравнений в MathCAD 14 (30/34)

3.Системы нелинейных уравнений MathcadСкачать

3.Системы нелинейных уравнений Mathcad

Использование меню «Символьные операции» в MathCAD 14 (25/34)Скачать

Использование меню «Символьные операции» в MathCAD 14 (25/34)

MathCAD. Given - FindСкачать

MathCAD. Given - Find

MathCAD Решение системы линейных уравнений матричным методомСкачать

MathCAD  Решение системы линейных уравнений матричным методом

Mathcad Prime. Урок 3 - Символьные преобразованияСкачать

Mathcad Prime. Урок 3 - Символьные преобразования
Поделиться или сохранить к себе: