- Уравнение движения автомобиля
- Силовой баланс при прямолинейном движении автомобиля
- Условия возможности движения автомобиля
- Мощностной баланс автомобиля
- Силы действующие на автомобиль при движении
- Схема сил действующих на ведущее колесо
- Тяговая сила
- Сила сцепления колес с дорогой
- Сила сопротивления воздуха
- Сила сопротивления качению
- Сила сопротивления подъему
- Сила сопротивления разгону
- Центр тяжести
- Теория движения автомобиля: основные элементы
- Силы, действующие на автомобиль
- Разгон, ускорение, накат
- Торможение автомобиля
- Управляемость автомобиля
- Занос автомобиля
- Проходимость автомобиля
- 🔥 Видео
Видео:Центробежная сила! Это Должен Знать Каждый Водитель [Автошкола RED]Скачать
Уравнение движения автомобиля
Силовой баланс при прямолинейном движении автомобиля
В предыдущей статье рассмотрены все силы, действующие на автомобиль во время его прямолинейного движения – сила тяги Рт , сила тяжести G , сила сопротивления воздуха Рω , касательные Rx и нормальные Ry составляющие реакции дороги, силы инерции Pj , силы сопротивления подъему Pα , силы сопротивления качению колес Pf , и (в случае движения автопоезда) сила Рпр на буксирном крюке.
Эти силы можно разделить на две группы – силы, обеспечивающие движение автомобиля, и силы сопротивления, препятствующие этому движению. В общем случае лишь одна сила обеспечивает его движение – сила тяги Рт , приложенная к ведущим колесам. В частных случаях реально помогать движению автомобиля могут еще три силы – сила тяжести (при движении под уклон), сила инерции и сила попутного ветра. Тем не менее, эти силы при составлении динамического баланса тоже следует отнести к силам сопротивления движению автомобиля, учитывая лишь их векторное значение для каждого конкретного случая..
Спроектировав все силы на плоскость опорной поверхности автомобиля, получим уравнение динамики прямолинейного движения:
Очевидно, что движение возможно лишь в том случае, если сила тяги Рт будет больше суммы сил Pψ , Pj , Pω , препятствующих движению. При этом движение возможно до тех пор, пока не начнется пробуксовка ведущих колес, т. е. сила тяги на ведущих колесах не превысит значение, при котором не будет иметь место сцепление шин с поверхностью дороги.
Сила тяги по сцеплению
Сила тяги образуется касательными реакциями дороги. Эти реакции представляют собой силы трения и силы зацепления, при этом силы зацепления возникают на деформируемых грунтах. Сила тяги ведущего колеса, которую можно реализовать для движения автомобиля на данном дорожном покрытии или грунте, имеет предел, зависящий от сцепных свойств шины.
Предельные значения силы тяги, которые можно реализовать по сцепным свойствам дороги, называют силой тяги по сцеплению Pφ . Основными факторами, влияющими на силу тяги по сцеплению, являются:
- нагрузка на ведущие колеса (сцепная нагрузка) и ее распределение по колесам;
- качество и состояние дорожного покрытия (грунта);
- удельное давление шин на дорогу;
- тип силовой передачи;
- состояние протектора шин.
Рассмотрим влияние каждого из этих факторов на силу тяги по сцеплению.
Сцепная нагрузка
При увеличении нагрузки на колесо увеличивается сила трения и сила зацепления. Сила тяги по сцеплению прямо пропорциональна сцепной нагрузке Gφ или нормальным реакциям на ведущих колесах:
где φx – коэффициент продольного сцепления колеса с опорной поверхностью.
А поскольку сила тяги определяется максимальным значением касательной реакции дороги, которая пропорциональна Rz , то можно записать:
где Rx max – максимально возможная продольная реакция по сцеплению.
Коэффициент φx определяется экспериментальным путем чаще всего при скольжении колеса в тормозном режиме, т. е. при протаскивании полностью заторможенного колеса:
Дорожное покрытие
Качество и состояние дорожного покрытия являются решающими факторами, влияющими на коэффициент сцепления φx . При движении автомобиля по дороге с твердым покрытием коэффициент продольного сцепления колеса с опорной поверхностью зависит от шероховатости и влажности дороги, наличия пыли и грязи. При этом даже тонкий слой воды на дорожном покрытии может не только существенно снизить φx , но и создавать подъемную силу, еще больше снижая сцепление шины с дорогой. Такой же и даже более выраженный эффект может создавать жидкая грязь на дороге.
Следует учитывать, что подъемная сила, возникающая при движении по мокрым и грязным дорогам, пропорциональная квадрату скорости движения автомобиля, и при большой скорости может вызвать аквапланирование, когда полностью прерывается контакт между шинами и дорогой.
Удельное давление на дорогу
Удельное давление шины на дорогу определяется площадью опорной поверхности шины и весом автомобиля, приходящимся на данное колесо. Регулировать удельное давление шины на дорогу можно изменением давления в шине – при снижении давления увеличивается площадь опорной поверхности и удельное давление снижается, и наоборот – при увеличении давления воздуха в шине уменьшается площадь опорной поверхности, что приводит к увеличению удельного давления колеса на дорогу.
Очевидно, что увеличение опорной поверхности шины с дорогой приводит к увеличению силы сцепления, особенно, на грунтовых дорогах, поскольку в зацеплении участвует большее количество грунтозацепов протектора покрышки.
При движении по влажным дорожным покрытиям повышенное удельное давление (давление в шинах) может благотворно сказаться на сцеплении шин с дорогой из-за выдавливания влаги из-под колес.
Удельное давление, оказываемое колесом на опорную поверхность, в некоторой степени зависит и от размеров шины – от ее диаметра и ширины. При увеличении диаметра колеса сегмент дуги, по которой осуществляется контакт шины с дорогой, имеет бȯльшую длину, чем опорный сегмент маленького колеса. Широкая шина создает колесу опору большей площади, чем узкая.
Влияние на сцепные свойства типа трансмиссии
Многочисленные опыты показали, что применение бесступенчатых трансмиссий обеспечивает повышение силы тяги по сцеплению. Главную роль здесь играет возможность плавного изменения величины тяговых моментов на ведущих колесах, без рывков и резких толчков.
В трансмиссиях, оснащенных ступенчатыми коробками передач, потеря сцепления колес с опорной поверхностью чаще всего имеет место во время переключения передач, сопровождающихся резким изменением величины крутящего момента на колесах.
Влияние конструкции шин
Важную роль в повышении сцепления колеса с дорогой играют рисунок протектора, а для шин повышенной проходимости размеры (особенно, высота) грунтозацепов протектора. Протектор шин легковых автомобилей обычной проходимости, как правило, имеет мелкий рисунок, обеспечивающий хорошее сцепление с твердым покрытием.
Наименьший коэффициент сцепления при прочих равных условиях у шин с изношенным рисунком протектора. Поэтому использование автомобилей с такими шинами запрещено.
Недостаточная величина коэффициента сцепления является причиной многих дорожно-транспортных происшествий. Для обеспечения безопасности дорожного движения его величина не должна быть меньше 0,4.
На дорогах с низкими сцепными свойствами коэффициент сцепления φx снижается до 0,2 и становится соизмеримым с коэффициентом сопротивления качению f . Это означает,что движение может оказаться невозможным из-за отсутствия запаса силы тяги по сцеплению. Следовательно, условие качения колес без скольжения можно представить в виде
Если сила тяги Рт меньше силы сцепления Рφ , ведущие колеса катятся без буксования. Если сила тяги превысит силу сцепления колес с дорогой, ведущие колеса будут пробуксовывать, а для движения использоваться лишь часть силы тяги, равная φRz . Остальная часть силы тяги вызывает ускоренное вращение буксующих колес. Буксование колес связано со значительными потерями энергии на трение шин о дорогу и разрушение опорной поверхности.
Не менее вредное влияние на сцепную тягу автомобиля и его устойчивость на дороге оказывает скольжение заторможенных колес по твердому дорожному покрытию (блокировка колес). В этом случае изношенные частицы шины, попадая на опорную поверхность колеса и дороги, вызывают эффект «смазки», существенно снижая сцепные свойства шины. Это явление явилось причиной появления тормозных систем с антиблокировочными устройствами (АБС).
Условия возможности движения автомобиля
Согласно уравнению силового баланса (1) равномерное безостановочное движение автомобиля возможно лишь при условии
Выполнение этого условия для безостановочного движения автомобиля необходимо, но недостаточно, поскольку оно возможно лишь при отсутствии буксования ведущих колес.
Учитывая формулу (2) условие безостановочного движения можно выразить так:
Если суммарная сила сопротивления движению больше силы тяги, то двигатель автомобиля заглохнет. Если сила тяги превысит силу сцепления, ведущие колеса начнут пробуксовывать.
Формула (4) справедлива для полноприводных автомобилей, где вертикальная реакция Rz на ведущих колесах равна весу автомобиля. Для переднеприводных автомобилей вместо Rz следует подставить Rz1 , для заднеприводных – Rz2 .
Мощностной баланс автомобиля
Иногда вместо силового баланса, характеризуя возможность движения автомобиля, пользуются мощностным балансом. Мощность силы определяется ее модульной величиной и скоростью v движения тела под действием этой силы. Если умножить все члены уравнения силового баланса (1) на v /1000, получим уравнение мощностного баланса:
где Nт – тяговая мощность:
Nт = Ртv/ 1000 = Мкiтрηтрv/ 1000 r = Nеηтр
(здесь Nе – эффективная мощность двигателя, ηтр – КПД трансмиссии, iтр – передаточное число трансмиссии);
Nα – мощность, затрачиваемая на преодоление подъема:
Nf – мощность, затрачиваемая на преодоление сопротивления качению:
Nω — мощность, затрачиваемая на преодоление сопротивления воздуха:
Nj – мощность, затрачиваемая на преодоление сопротивления разгону:
Nψ – мощность, затрачиваемая на преодоление сопротивления дороги:
Уравнение мощностного баланса устанавливает соотношения между мощностью, подводимой к ведущим колесам автомобиля и мощностью, необходимой для преодоления сопротивления движению автомобиля.
Используя уравнение мощностного баланса строят графики мощностного баланса для движения автомобиля на каждой из передач. Такие графики удобно использовать при сравнительной оценке тяговых свойств автомобиля графическими методами.
Видео:Силы действующие на автомобиль при движении Подробный видеоурокСкачать
Силы действующие на автомобиль при движении
Видео:Аэродинамика | Science Garage На РусскомСкачать
Схема сил действующих на ведущее колесо
На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.
Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения
Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.
На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:
- тяговая сила
- сила сопротивления воздуха
- сила сопротивления качению
При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопротивления разгону (сила инерции).
Видео:Урок 39 (осн). Сила трения. Коэффициент тренияСкачать
Тяговая сила
Развиваемый двигателем автомобиля крутящий момент передается на ведущие колеса. В передаче крутящего момента от двигателя к ведущим колесам участвуют механизмы трансмиссии. Крутящий момент на ведущих колесах зависит от крутящего момента двигателя и передаточных чисел коробки передач и главной передачи. В точке касания колес с поверхностью дороги крутящий момент вызывает окружную силу. Противодействие дороги этой окружной силе выражается реактивной силой, передаваемой от дороги на ведущее колесо. Эта сила направлена в сторону движения автомобиля и называется толкающей или тяговой силой. Тяговая сила от колес передается на ведущий мост и далее на раму, заставляя автомобиль двигаться. Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки передач и главной передачи. Тяговая сила на ведущих колесах достигает наибольшей величины при движении автомобиля на низшей передаче, поэтому низшую передачу используют при трогании с места автомобиля с грузом, при движении автомобиля по бездорожью. Величина тяговой силы на ведущих колесах автомобиля ограничивается сцеплением шин с поверхностью дороги.
Видео:Теория механизмов и машин. Лекция: уравнение движения механизма, режимы работы механизмаСкачать
Сила сцепления колес с дорогой
Трение, возникающее между ведущими колесами автомобиля и дорогой, называется силой сцепления. Сила сцепления равна произведению коэффициента сцепления на сцепной вес, т. е. вес, приходящийся на ведущие колеса автомобиля. Величина коэффициента сцепления шин с дорогой зависит от качества и состояния дорожного покрытия, формы и состояния рисунка протектора шины, давления воздуха в шине.
У легковых автомобилей полный вес распределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомобилей при полной их нагрузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.
Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначительном коэффициенте сцепления трогание автомобиля с места сопровождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.
На асфальтобетонных покрытиях в жаркую погоду на поверхность выступает битум, делая дорогу маслянистой и более скользкой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.
При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы рисунка протектора шины не успевают продавливать пленку влаги.
Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.
Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает настолько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.
Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.
Видео:Ирина Пономарева — Орбитальная механика: уравнения движения в центральном полеСкачать
Сила сопротивления воздуха
При движении автомобиль преодолевает сопротивление воздуха, которое складывается из нескольких сопротивлений:
- лобового сопротивления (около 55—60% всего сопротивления воздуха)
- создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
- возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.
Передней частью автомобиля воздух сжимается и раздвигается, в то время как в задней части автомобиля создается разрежение, которое вызывает образование завихрений.
Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движения. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту автомобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возрастает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).
Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а выступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомобилей можно уменьшить силу сопротивления воздуха, закрыв грузовую платформу брезентом, натянутым между крышей кабины и задним бортом.
Видео:Центробежная силаСкачать
Сила сопротивления качению
На каждое колесо автомобиля постоянно действует вертикальная нагрузка, которая вызывает вертикальную реакцию дороги. При движении автомобиля на него действует сила сопротивления качению, которая возникает вследствие деформации шин и дороги и трения шин о дорогу.
Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:
- для асфальтобетонного покрытия— 0,014—0,020
- для гравийного покрытия—0,02—0,025
- для песка—0,1—0,3
Видео:Видеолекция Силы, действующие на автомобиль при движенииСкачать
Сила сопротивления подъему
Автомобильная дорога состоит из чередующихся между собой подъемов и спусков и редко имеет горизонтальные участки большой длины.
При движении на подъем автомобиль испытывает дополнительное сопротивление, которое зависит от угла наклона дороги к горизонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.
При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.
Видео:Основы динамики самолета, крен, тангаж и рысканье - Основы Авиации #3Скачать
Сила сопротивления разгону
Часть тяговой силы при разгоне затрачивается на ускорение вращающихся масс, главным образом маховика коленчатого вала двигателя и колес автомобиля. Для того чтобы автомобиль начал двигаться с определенной скоростью, ему необходимо преодолеть силу сопротивления разгону, равную произведению массы автомобиля на ускорение. При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения эта сила направлена в сторону движения автомобиля. Бывают случаи, когда при резком разгоне груз или пассажиры падают из открытого кузова, с сидений мотоцикла, а при резком торможении пассажиры ударяются о лобовое стекло или о передний борт автомобиля. Для того чтобы таких случаев не было, необходимо, плавно увеличивая частоту вращения коленчатого вала двигателя, преодолевать силу сопротивления разгону и плавно осуществлять торможение автомобиля.
Видео:Насколько хорошо ты знаешь устройство автомобиля?ТестСкачать
Центр тяжести
На автомобиль, как и на любое другое тело, действует сила тяжести, направленная вертикально вниз. Центром тяжести автомобиля называют такую точку автомобиля, от которой вес автомобиля распределяется равномерно во всех направлениях. У автомобиля центр тяжести располагается между передней и задней осью на высоте около 0,6 м для легковых и 0,7—1,0 м для грузовых. Чем ниже расположен центр тяжести, тем устойчивее автомобиль против опрокидывания. При загрузке автомобиля грузом центр тяжести поднимается у легковых автомобилей примерно на 0,3—0,4 м, а у грузовых на 0,5 м и более в зависимости от рода груза. При неравномерном укладывании груза центр тяжести может также сместиться вперед, назад или в сторону, при этом будут нарушаться устойчивость автомобиля и легкость управления.
Видео:Влияние свойств ТС кат. С, D на эффективность и безопасность управленияСкачать
Теория движения автомобиля: основные элементы
Видео:ИнерцияСкачать
Силы, действующие на автомобиль
На автомобиль, независимо от того, движется он или неподвижен, действует сила тяжести (вес), направленная отвесно вниз.
Сила тяжести прижимает колеса автомобиля к дороге. Равнодействующая этой силы, размещена в центре тяжести. Распределение веса автомобиля по осям зависит от расположения центра тяжести. Чем ближе к одной из осей расположен центр тяжести, тем больше будет нагрузка на эту ось. На легковых автомобилях нагрузка на оси распределяется примерно поровну.
Действие силы тяжести на автомобиль
Большое значение на устойчивость и управляемость автомобиля имеет расположение центра тяжести не только в отношении продольной оси, но и по высоте. Чем выше центр тяжести, тем менее устойчивым будет автомобиль. Если автомобиль находится на горизонтальной поверхности, то сила тяжести направлена отвесно вниз. На наклонной поверхности она раскладывается на две силы (см. рисунок): одна из них прижимает колеса к поверхности дороги, а другая стремится опрокинуть автомобиль. Чем выше центр тяжести и чем больше угол наклона автомобиля, тем скорее нарушится устойчивость и автомобиль может опрокинуться.
Во время движения, кроме силы тяжести, на автомобиль действует и ряд других сил, на преодоление которых затрачивается мощность двигателя.
Схема сил, действующих на автомобиль во время движения
На рисунке показана схема сил, действующих на автомобиль во время движения. К ним относятся:
- сила сопротивления качению, затрачиваемая на деформирование шины и дороги, на трение шины о дорогу, трение в подшипниках ведущих колес и др.;
- сила сопротивления подъему (на рисунке не показана), зависящая от веса автомобиля и угла подъема;
- сила сопротивления воздуха, величина которой зависит от формы (обтекаемости) автомобиля, относительной скорости его движения и плотности воздуха;
- центробежная сила, возникающая во время движения автомобиля на повороте и направленная в противоположную от поворота сторону;
- сила инерции движения, величина которой состоит из силы, необходимой для ускорения массы автомобиля в его поступательном движении, и силы, необходимой для углового ускорения вращающихся частей автомобиля.
Движение автомобиля возможно только при условии, что его колеса будут иметь достаточное сцепление с поверхностью дороги.
Если сила сцепления будет недостаточной (меньше величины силы тяги на ведущих колесах), то колеса пробуксовывают.
Сила сцепления с дорогой зависит от веса, приходящегося на колесо, от состояния покрытия дороги, давления воздуха в шинах и рисунка протектора.
Для определения влияния состояния дороги на силу сцепления служит коэффициент сцепления, который определяют делением силы сцепления ведущих колес автомобиля на вес автомобиля, приходящийся на эти колеса.
Коэффициент сцепления с дорогой в зависимости от покрытия
Коэффициент сцепления зависит от вида покрытия дороги и от его состояния (наличия влаги, грязи, снега, льда); величина его приведена в таблице (см. рисунок).
На дорогах с асфальтобетонным покрытием коэффициент сцепления резко уменьшается, если на поверхности имеется влажная грязь и пыль. В этом случае грязь образует пленку, резко уменьшающую коэффициент сцепления.
На дорогах с асфальтобетонным покрытием в жаркую погоду появляется на поверхности маслянистая пленка из выступающего битума, снижающая коэффициент сцепления.
Уменьшение коэффициента сцепления колес с дорогой наблюдается также при увеличении скорости движения. Так, при возрастании скорости движения на сухой дороге с асфальтобетонным покрытием с 30 до 60 км/ч коэффициент сцепления уменьшается на 0,15.
Видео:Лекция по Безопасности движения, эксплуатационные свойства автомобиляСкачать
Разгон, ускорение, накат
Мощность двигателя затрачивается на приведение во вращение ведущих колес автомобиля и преодоление сил трения в механизмах трансмиссии.
Если величина усилия, с которым вращаются ведущие колеса, создавая тяговую силу, будет больше чем суммарная сила сопротивления движению, то автомобиль будет двигаться с ускорением, т.е. с разгоном.
Ускорением называется прирост скорости за единицу времени. Если тяговое усилие равно силам сопротивления движению, то автомобиль будет двигаться без ускорения с равномерной скоростью. Чем выше максимальная мощность двигателя и меньше величина суммарных сил сопротивления, тем быстрее автомобиль достигнет заданной скорости.
Кроме того, на величину ускорения влияет вес автомобиля, передаточное число коробки передач, главной передачи, количество передач и обтекаемость автомобиля.
Во время движения накапливается определенный запас кинетической энергии, и автомобиль приобретает инерцию. Благодаря инерции автомобиль может двигаться некоторое время с отключенным двигателем – накатом. Движение накатом используют для экономии топлива.
Видео:Как работает колесоСкачать
Торможение автомобиля
Торможение автомобиля имеет большое значение для безопасности движения и зависит от его тормозных качеств. Чем лучше и надежнее тормоза, тем быстрее можно остановить движущийся автомобиль и тем с большей скоростью можно двигаться, а следовательно, и больше будет его средняя скорость.
Во время движения автомобиля накопленная кинетическая энергия поглощается при торможении. Торможению помогают силы сопротивления воздуха, сопротивления качению и сопротивления подъему. На уклоне силы сопротивления подъему отсутствуют, а к инерции автомобиля добавляется составляющая сила тяжести, которая затрудняет торможение.
При торможении между колесами и дорогой возникает тормозная сила, противоположная направлению силы тяги. Торможение зависит от соотношения между тормозной силой и силой сцепления. Если сила сцепления колес с дорогой будет больше тормозной силы, то автомобиль затормаживается. Если тормозная сила будет больше силы сцепления, то при заторможенных колесах произойдет их скольжение относительно дороги. В первом случае при торможении колеса катятся, постепенно замедляя вращение, а кинетическая энергия автомобиля превращается в тепловую энергию, нагревающую тормозные колодки и диски (барабаны). Во втором случае колеса перестают вращаться и будут скользить по дороге, поэтому большая часть кинетической энергии будет превращаться в тепло трения шин о дорогу. Торможение с остановившимися колесами ухудшает управляемость автомобиля, особенно на скользкой дороге, и приводит к ускоренному износу шин.
Наибольшую тормозную силу можно получить только тогда, когда тормозные моменты на колесах будут пропорциональны нагрузкам, приходящимся на них. Если такая пропорциональность не будет соблюдена, то тормозная сила на одном из колес не будет полностью использована.
Эффективность торможения оценивается по тормозному пути и величине замедления.
Тормозной путь – это расстояние, которое проходит автомобиль от начала торможения до полной остановки. Замедление автомобиля – это величина, на которую уменьшается скорость автомобиля за единицу времени.
Видео:Движение тел в жидкостях и газах. Лобовое сопротивление и подъемная сила. Формула Стокса. 10 класс.Скачать
Управляемость автомобиля
Под управляемостью автомобиля понимают его способность изменять направление движения.
Стабилизирующее действие углов продольного и поперечного наклона оси поворота колеса
Во время движения автомобиля по прямой очень важно, чтобы управляемые колеса не поворачивались произвольно и водителю не нужно было бы затрачивать усилия для удержания колес в нужном направлении. На автомобиле предусмотрена стабилизация управляемых колес в положении движения в прямом направлении, которая достигается продольным углом наклона оси поворота и углом между плоскостью вращения колеса и вертикалью. Благодаря продольному наклону колесо устанавливается так, что его точка опоры по отношению оси поворота снесена назад на величину а и его работа подобна ролику (см. рисунок).
При поперечном наклоне повернуть колесо всегда труднее, чем вернуть его в исходное положение – движения по прямой. Это объясняется тем, что при повороте колеса передняя часть автомобиля приподнимается на величину б (водитель прилагает сравнительно большее усилие к рулевому колесу).
Для возвращения управляемых колес в положение, соответствующее движению по прямой, вес автомобиля помогает поворачиванию колес и водитель прикладывает к рулевому колесу небольшое усилие.
Схема бокового увода колеса
На автомобилях, особенно у тех, где давление воздуха в шинах невелико, возникает боковой увод. Боковой увод возникает в основном под действием поперечной силы, вызывающей боковой прогиб шины; при этом колеса катятся не по прямой, а смещаются в сторону под действием поперечной силы (см. рисунок).
Оба колеса передней оси имеют одинаковый угол увода. При уводе колес меняется радиус поворота, который увеличивается, уменьшая поворачиваемость автомобиля, а устойчивость движения при этом не изменяется.
При уводе колес задней оси радиус поворота уменьшается, особенно это заметно, если угол увода задних колес больше, чем у передних, стабильность движения нарушается, автомобиль начинает «рыскать» и водителю все время приходится подправлять направление движения. Для уменьшения влияния увода на управляемость автомобиля давление воздуха в шинах передних колес должно быть несколько меньше, чем у задних. Увод колес будет тем больше, чем большей будет боковая сила, действующая на автомобиль, например, на крутом повороте, где возникают большие центробежные силы.
Видео:Устойчивость автомобиля.Скачать
Занос автомобиля
Заносом называется боковое скольжение задних колес при продолжающемся поступательном движении автомобиля. Иногда занос может привести к повороту автомобиля вокруг своей вертикальной оси.
Занос может возникать в результате ряда причин. Если резко повернуть управляемые колеса, то может оказаться, что инерционные силы станут больше, чем сила сцепления колес с дорогой, особенно часто это случается на скользких дорогах.
Схема заноса автомобиля на повороте
При неодинаковых тяговых или тормозных силах, приложенных на колеса правой и левой сторон, действующих в продольном направлении, возникает поворачивающий момент, приводящий к заносу. Непосредственной причиной заноса при торможении являются неодинаковые тормозные силы на колесах одной оси, неодинаковое сцепление колес правой или левой стороны с дорогой или неправильное размещение груза относительно продольной оси автомобиля. Причиной заноса автомобиля на повороте может быть также торможение его, так как при этом к поперечной силе добавляется продольная сила и их сумма может превысить силу сцепления, препятствующую заносу (см. рисунок).
Чтобы предотвратить начавшийся занос автомобиля, необходимо: прекратить торможение, не выключая сцепление (на автомобилях с МКПП); повернуть колеса в сторону заноса.
Эти приемы выполняют сразу же, как только начался занос. После прекращения заноса нужно выровнять колеса, чтобы занос не начался в другом направлении.
Чаще всего занос получается при резком торможении на мокрой или обледенелой дороге, особенно быстро нарастает занос на большой скорости, поэтому при скользкой или обледенелой дороге и на поворотах нужно уменьшать скорость, не применяя торможение.
Видео:Крутящий момент и лошадиные силы | Science Garage На РусскомСкачать
Проходимость автомобиля
Проходимостью автомобиля называется его способность двигаться по плохим дорогам и в условиях бездорожья, а также преодолевать различные препятствия, встречающиеся на пути. Проходимость определяется:
- способностью преодолевать сопротивление качению, используя тяговые силы на колесах;
- габаритными размерами транспортного средства;
- способностью автомобиля преодолевать препятствия, встречающиеся на дороге.
Основным фактором, характеризующим проходимость, является соотношение между наибольшей тяговой силой, используемой на ведущих колесах, и силой сопротивления движению. В большинстве случаев проходимость автомобиля ограничивается недостаточной силой сцепления колес с дорогой и в связи с этим невозможностью использовать максимальную тяговую силу. Для оценки проходимости автомобиля по грунту пользуются коэффициентом сцепного веса, определяемым делением веса, приходящегося на ведущие колеса, на общий вес автомобиля. Наибольшую проходимость имеют автомобили, у которых все колеса являются ведущими. В случае применения прицепов, увеличивающих общий вес, но не изменяющих сцепной вес, проходимость резко снижается.
На величину сцепления ведущих колес с дорогой значительное влияние оказывает удельное давление шин на дорогу и рисунок протектора. Удельное давление определяется давлением веса, приходящегося на колесо, на площадь отпечатка шины. На рыхлых грунтах проходимость автомобиля будет лучше, если удельное давление будет меньше. На твердых и скользких дорогах проходимость улучшается при большем удельном давлении. Шина с крупным рисунком протектора на мягких грунтах будет иметь отпечаток большей площади и имеет меньшее удельное давление, а на твердых грунтах отпечаток этой шины будет меньшей площади и удельное давление увеличивается.
Параметры проходимости автомобиля
Проходимость автомобиля по габаритным размерам определяется по:
- продольному радиусу проходимости;
- поперечному радиусу проходимости;
- наименьшему расстоянию между низшими точками автомобиля и дорогой;
- переднему и заднему углу проходимости (углы въезда и съезда);
- радиусу поворотов горизонтальной проходимости;
- габаритным размерам автомобиля;
- высоте центра тяжести автомобиля.
🔥 Видео
Урок 87. Движение по наклонной плоскости (ч.1)Скачать
8 советов для водителей о которых еще никто не знает!Скачать
Урок 7. Механическое движение. Основные определения кинематики.Скачать