Название: Дифференциальные уравнения Раздел: Рефераты по математике Тип: шпаргалка Добавлен 15:01:54 23 июня 2003 Похожие работы Просмотров: 7754 Комментариев: 24 Оценило: 6 человек Средний балл: 4 Оценка: 4 Скачать
Основные понятия и определения.
Дифференциальное уравнение называется соотношение вида
связывающее независимую переменную х, ее ф-цию у, а также производные этой функции до н-го порядка включительно. если в уравнении 1 входит одна независимая переменная, то такое диф. ур. называется обыкновенным, если в уравнение 1 входит несколько независимых переменных, то такое диф. ур. называется уравнение в частных производных. Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.
Решением уравнения 1 называется н-раз дифференцированная функция y=f(x), которая при подстановке в уравнение 1 обращает его в тождество. В простейшем случае определение функции y=f(x) сводится к вычислению интеграла, а поэтому процесс нахождения решения диф. уравн. называется его интегрированием, а график ф-ции y=f(x) называется интегральной кривой диф. уравн. Т.к. при интегрировании функции получается множество решений, отличающихся друг от друга постоянным коэффициентом, то любое диф. уравн. также будет иметь множество решений, графически определяемых семейством интегральных кривых. Общим решением (общим интегралом) диф. уравн. н-го порядка называется его решение явно (неявно) выраженное относительно ф-ции у и содержащей н-независимых производных постоянных.
Независимость констант СI означает,что ни одна из них не может быть выражена через остальные, а следовательно число этих констант не может быть уменьшено на единицу.
Частным решением интеграла диф. уравн. н-го понрядка называется такое его решение, в котором произвольным константам Сi присвоены конкретные значения. это конкретные значения находятся из решения системы так называемых начальных условий
В этой системе правые части равенства представляют собой некоторые константы.
Диф. уравн н-го порядка
Диф. уравн. 1-го порядка имеет вид.
Если уравн. 1 разрешить относительно производной y’, то получают дифференциальное уравнение первого порядка разрешенное относительно y’
Диф. уравн. 2 можно представить в так называемой диф. форме
P и Q многочлены зависящие от х и у дифференциальное уравнение описываемое соотношением 1,2,3 в частом случае могут не зависеть от независимой переменной х или ее ф-ции у, но обязательно включают производную y’.
Диф. уравн. с разделяющимися переменными
Диф. ур с раздел переменными называются уравнения вида
(3)
Уравнения (3) и (3¢) называются общими интегралами исходного диф. уравнения.
ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.
Определение 1. Ф-ция ¦(x,y) наз-ся однородной функцией н-го порядка относительно переменных x и y, если для любого t, отличного от нуля справедливо тождество ¦(tx; ty)=t^n ¦(x;y)
ОДНОРОДНАЯ ФУНКЦИЯ НУЛЕВОГО ПОРЯДКА.
Отношение двух однородных функций одинакового порядка есть однородная функция нулевого порядка.
Определение 2. Диф. уравнение P(x;y)dx + Q(x;y)dy=0 (1) является однородным уравнением , если функции P(x;y) и Q(x;y) являются однородными функциями одного и того же порядка.
Разрешим уравнение (1) относительно производной
Производная является однородной функцией нулевого порядка.
Определение 3. Диф. уравнение у¢=¦(x;y) (2) наз-ся однородным, если его правая часть ¦(x;y) является однородной функцией нулевого порядка относительно своих аргументов.
Однородное диф. уравнение приводится к диф. уравнениям с разделяющимися переменными подстановкой t=y/x ; y=t*x
При такой подстановке правая часть уравнения (2) ¦(tx;ty) = ¦(1/x*x;1/x*y)= ¦(1;y/x) = j(y/x) =j(t)
следовательно однородную функцию ¦(x;y) можно представить как функцию j от аргумента t=y/x
ò dt/(j(t)-t)=ò dx/x + c
общее решение уравнения 2.
ДИФ. УРАВНЕНИЕ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ.
Д.У. P(x;y)dx + Q(x;y)dy=0 (1)
наз-ся уравнением в полных дифференциалах если левая часть этого уравнения представляет собой полный дифференциал некоторой функции U(x;y)/
Необходимым и достаточным условием, того ,что уравнение (1) будет уравнением в полных дифференциалах, выполнение равенства
Действительно, если левая часть равенства (1) есть полный диф. функции U(x;y) ,то dU(x;y)=P(x;y)+Q(x;y)dy
dU(x;y)= dU/dx*dx + dU/dy*dy (3)
Сравнивая рав. 3 и 4
Т.к для диф. ф-ции U(x;y) частная произв. 2-го порядка не зависят от порядка диф., то мы приходим к равенству (2). С учётом равенства(30 равенство (1) может быть зависимо как
Это и есть общее решение нашего д.у.
Для отыскания ф-ции U воспользуемся ф-лой (5)
U= ò(x;y)dx+C=òP(x;y)dx + j(y) (9)
Для отыскания ф-ции j(y) продифференцируем равенство (9) по переменной y
Проинтегрировав левую и правую часть рав. (10) мы получим значение ф-ции j(y):
Подставим равенство (11) в (9)
C=C-C получаем общее решение диф. уравнения.
В ф-ле (12) знаки частной производной и дифференциала можно поменять местами.
Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
Шпаргалка на тему Дифференциальные уравнения
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
на тему: Дифференциальные уравнения
Основные понятия и определения.
Дифференциальное уравнение называется соотношение вида
связывающее независимую переменную х, ее ф-цию у, а также производные этой функции до н-го порядка включительно. если в уравнении 1 входит одна независимая переменная, то такое диф. ур. называется обыкновенным, если в уравнение 1 входит несколько независимых переменных, то такое диф. ур. называется уравнение в частных производных. Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение.
Решением уравнения 1 называется н-раз дифференцированная функция y = f ( x ), которая при подстановке в уравнение 1 обращает его в тождество. В простейшем случае определение функции y = f ( x ) сводится к вычислению интеграла, а поэтому процесс нахождения решения диф. уравн. называется его интегрированием, а график ф-ции y = f ( x ) называется интегральной кривой диф. уравн. Т.к. при интегрировании функции получается множество решений, отличающихся друг от друга постоянным коэффициентом, то любое диф. уравн. также будет иметь множество решений, графически определяемых семейством интегральных кривых. Общим решением (общим интегралом) диф. уравн. н-го порядка называется его решение явно (неявно) выраженное относительно ф-ции у и содержащей н-независимых производных постоянных.
Независимость констант С I означает, что ни одна из них не может быть выражена через остальные, а следовательно число этих констант не может быть уменьшено на единицу.
Частным решением интеграла диф. уравн. н-го понрядка называется такое его решение, в котором произвольным константам С i присвоены конкретные значения. это конкретные значения находятся из решения системы так называемых начальных условий
В этой системе правые части равенства представляют собой некоторые константы.
Диф. уравн н-го порядка
Диф. уравн. 1-го порядка имеет вид.
Если уравн. 1 разрешить относительно производной y ’, то получают дифференциальное уравнение первого порядка разрешенное относительно y ’
Диф. уравн. 2 можно представить в так называемой диф. форме
P и Q многочлены зависящие от х и у дифференциальное уравнение описываемое соотношением 1,2,3 в частом случае могут не зависеть от независимой переменной х или ее ф-ции у, но обязательно включают производную y ’.
Диф. уравн. с разделяющимися переменными
Диф. ур с раздел переменными называются уравнения вида
Где f 1(х) и f 2(х) зависят только от х, и 1(у) и 2(у), разделим обе части уравнения (1) на 1(у) и f 1(х) получим
Уравнения (3) и (3) называются общими интегралами исходного диф. уравнения.
ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.
Определение 1. Ф-ция ( x , y ) наз-ся однородной функцией н-го порядка относительно переменных x и y , если для любого t , отличного от нуля справедливо тождество ( tx ; ty )= t ^ n ( x ; y )
ОДНОРОДНАЯ ФУНКЦИЯ НУЛЕВОГО ПОРЯДКА.
Отношение двух однородных функций одинакового порядка есть однородная функция нулевого порядка.
Определение 2. Диф. уравнение P ( x ; y ) dx + Q ( x ; y ) dy =0 (1) является однородным уравнением , если функции P ( x ; y ) и Q ( x ; y ) являются однородными функциями одного и того же порядка.
Разрешим уравнение (1) относительно производной
dy / dx =- P ( x ; y )/ Q ( x ; y )
Производная является однородной функцией нулевого порядка.
Определение 3. Диф. уравнение у=( x ; y ) (2) наз-ся однородным, если его правая часть ( x ; y ) является однородной функцией нулевого порядка относительно своих аргументов.
Однородное диф. уравнение приводится к диф. уравнениям с разделяющимися переменными подстановкой t = y / x ; y = t * x
При такой подстановке правая часть уравнения (2) ( tx ; ty ) = (1/ x * x ;1/ x * y )= (1; y / x ) = ( y / x ) = ( t )
следовательно однородную функцию ( x ; y ) можно представить как функцию от аргумента t = y / x
dt /( ( t )- t )= dx / x + c
общее решение уравнения 2.
ДИФ. УРАВНЕНИЕ В ПОЛНЫХ ДИФФЕРЕНЦИАЛАХ.
Д.У. P ( x ; y ) dx + Q ( x ; y ) dy =0 (1)
наз-ся уравнением в полных дифференциалах если левая часть этого уравнения представляет собой полный дифференциал некоторой функции U ( x ; y )/
Необходимым и достаточным условием, того ,что уравнение (1) будет уравнением в полных дифференциалах, выполнение равенства
Действительно, если левая часть равенства (1) есть полный диф. функции U ( x ; y ) ,то dU ( x ; y )= P ( x ; y )+ Q ( x ; y ) dy
dU(x;y)= dU/dx*dx + dU/dy*dy (3)
Сравнивая рав. 3 и 4
dU / dx = P ( x ; y ) (5)
dU / dy = Q ( x ; y ) (6)
dP / dy = d ^2 U / dxdy
dQ / dx = d ^2 U / dydx
Т.к для диф. ф-ции U ( x ; y ) частная произв. 2-го порядка не зависят от порядка диф., то мы приходим к равенству (2). С учётом равенства(30 равенство (1) может быть зависимо как
Это и есть общее решение нашего д.у.
Для отыскания ф-ции U воспользуемся ф-лой (5)
dU = P ( x ; y ) dx
U = ( x ; y ) dx + C = P ( x ; y ) dx + ( y ) (9)
Для отыскания ф-ции ( y ) продифференцируем равенство (9) по переменной y
Проинтегрировав левую и правую часть рав. (10) мы получим значение ф-ции ( y ):
( y )= ( Q ( x ; y )- d / dy * P ( x ; y ) dx ) dy = C (11)
Подставим равенство (11) в (9)
P ( x ; y ) dx = ( Q ( x ; y )- d / dy * P ( x ; y ) dx ) dy + C = C
P ( x ; y ) dx + ( Q ( x ; y )- d / dy * P ( x ; y ) dx ) dy = C (12)
C = C — C получаем общее решение диф. уравнения.
В ф-ле (12) знаки частной производной и дифференциала можно поменять местами.
Ф-цию U можно было определить из равенства(6)
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.
Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.
Основные понятия о дифференциальных уравнениях
Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение (7.1)
Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.
Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.
Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.
Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.
Например, для дифференциального уравнения y’- 2 x = 0 (7.2) решением является функция y = x 2. Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.
Следует заметить, чтоy = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.
Дифференциальные уравнения первого порядка
Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную: F (x, y, y’) = 0.(7.3)
Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.
Если уравнение (7.2) решить относительно у’, то оно будет иметь вид: y’= f (x, y) или . (7.4)
Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение имеет решениями функции y = Cx, а дифференциальное уравнение — функции где C — произвольное число.
Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.
Определение. Общим решением дифференциального уравнения (7.3) называется функция у = φ (х, С), (7.5) которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.
Если функция (7.5) выражается неявно, то есть в виде Ф (х, у, С) = 0, (7.6) то (7.6) называется общим интегралом дифференциального уравнения.
Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.
Ф (х, у, С0) называется частным интегралом дифференциального уравнения.
На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или (7.7)
Условие (7.7) называется начальным условием решения.
Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.
Мы видим, что дифференциальное уравнение имеет общее решение y = Cx. Зададим начальное условие . Подставим эти значения в общее решение, получим 6 = 2С, откудаС = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.
Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет решение, дает теорема Коши.
ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производнаяопределены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.
Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной .
График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение имеет общее решениеy = Cx, то ему соответствует семья прямых, которые проходят через начало координат (рис. 1).
Уравнение имеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).
Если задано начальное условие то это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).
Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.
Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.
Дифференциальные уравнения с разделенными переменными
Определение. Уравнение вида f1 (y) dy = f2 (x) dx, (7.8) где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.
В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части: .
Понятно, что произвольную постоянную С можно записывать в любой части равенства.
Пример 1. Решить дифференциальное уравнение: , удовлетворяющее начальному условию
Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:
— это общее решение дифференциального уравнения. Подставляя в общее решение начальное условие, найдем С: 2 = С. Итак, является частным решением данного уравнения.
Дифференциальные уравнения с разделяющимися переменными
Определение. Уравнение вида f1 (x) f2 (y) + g1 (x) g2 (y) = 0 (7.9) называется дифференциальным уравнением с разделяющимися переменными.
В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:
Интегрируя это уравнение, запишем .
Получили общий интеграл данного уравнения.
Пример 2. Решить дифференциальное уравнение x (y + 1) dx – (x 2 + 1) ydy = 0.
Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим .
Интегрируя, получим
— общий интеграл дифференциального уравнения.
Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.
Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:
Получили общий интеграл дифференциального уравнения.
Используя начальное условие, найдем произвольную постоянную С: ln 1 + arctg 0 = C, откуда C = 0.
Найденную постоянную подставим в общий интеграл и отыщем частное решение: откуда
Однородные дифференциальные уравнения
Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие
Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.
Определение. Дифференциальное уравнение y ‘= f (x, y) (7.10) называется однородным, если функция f (x, y) однородная нулевого измерения.
Покажем, что это уравнение можно свести к уравнению с разделенными переменными. Рассмотрим функцию f (tx, ty). Сделаем замену будем иметь:
Тогда уравнение (7.10) запишется в виде (7.11) В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле или y = xu, (7.12) то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.
Из формулы (7.12) найдем y’ = u + xu’и уравнение примет вид: u + xu’ = φ (u), то есть , откуда .
После интегрирования получим Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.
Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить вместо u. В результате получим решение уравнения в неявном виде.
Пример 1. Найти решение однородного уравнения
Решение. Заменой y = xu сведем заданное уравнение к уравнению или .
Отделяя переменные, найдем откуда или , то есть . Возвращаясь к переменной y, получим общее решение: .
Линейные дифференциальные уравнения
Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения: y’ + P (x) y = Q (x).(7.13)
Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2.
Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.
Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.
Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.
Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14) где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).
Из равенства y = uv найдем производную y’: y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение (7.13): u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).
Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15) Тогда для отыскания функции u получим уравнение: u’v = Q (x). (7.16)
Сначала найдем v из уравнения (7.15). Отделяя переменные, имеем , откуда
Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.
Зная v, находим u из уравнения (7.16):
откуда
Здесь мы уже берем для u все первообразные.
Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения: (7.17)
При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).
Пример 1. Решить дифференциальное уравнение . Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’. Подставим y и y’ в уравнение: или . (7.18)
Выражение, стоящее в скобках, приравниваем к нулю, имеем или
Отделим переменные, домножив обе части уравнения на , тогда . После интегрирования, получим ln |v| = ln |x|(здесь ограничимся одной первообразной), откуда v = x. Подставим v = x в уравнение (7.18):
Общее решение запишется: y = x (x + C) = x 2 + Cx.
Пример 2. Найти частное решение дифференциального уравнения который удовлетворяет начальному условию y (0) = 0.
Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v. Тогда
Подставим v в уравнение и найдем u:
Общее решение дифференциального уравнения будет:
Подставляем начальные условия в найденное решение и находим С:
Из общего решения получаем частное решение .
Дифференциальное уравнение Бернулли
Определение. Уравнения вида (или ) называется дифференциальным уравнением Бернулли.
Данное уравнение отличается от уравнения (7.13) только множителем y» (или x») в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на y»:
Сделаем замену: Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:
Мы получили линейное дифференциальное уравнение относительно новой переменной
Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.
Решение. . Сделаем замену Тогда
Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).
Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения
Тогда .
Проинтегрировав правую часть этого уравнения по частям, получим , а приy -1 = z = uv, имеем
Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную искомую функцию и производные искомой функции до некоторого порядка включительно.
Обыкновенное дифференциальное уравнение может быть приведено к виду
Здесь — известная функция, заданная в некоторой области
Число т. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.
Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Основные понятия и определения
Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид
В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:
Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение
используя последнее в окрестности тех точек, в которых обращается в бесконечность.
Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение
Обе переменные и входят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.
Умножая обе части уравнения (3) на некоторую функцию получаем более симметричное уравнение:
где Обратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно или так что уравнение (4) равносильно следующим двум уравнениям:
Иногда уравнение записывают *з так называемой симметрической форме:
Возможно вам будут полезны данные страницы:
Решение уравнения. Предположим, что правая часть уравнения (2), определена на некотором подмножестве вещественной плоскости Функцию определенную в интервале мы будем называть решением уравнения (2) в этом интервале*, если:
Существует производная для всех значений из интервала (Отсюда следует, что решение представляет собою функцию, непрерывную ею всей области определения).
Функция обращает уравнение (2) в тождество:
справедливое для всех значений из интервала Это означает, что при любом из интервала точка принадлежит множеству и
Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения этого перевернутого уравнения естественно присоединять к решениям уравнения (2).
В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).
Примеры с решением
Пример 1.
является решением уравнения
в интервале ибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:
справедливое при всех значениях
Пример 2.
Функция есть решение равнения в интервале
Пример 3.
является решением уравнения
в интервале
Иногда функцию обращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.
Видео:Частное решение дифференциального уравнения. 11 класс.Скачать
Системы обыкновенных дифференциальных уравнений
При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . ynи их производные.
Пример. Пусть материальная точка массыmимеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времениt, когда на нее действует сила .
Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’. Положим, что сила, а соответственно и ее проекции Fx, Fy, Fz зависят от времениt, от положения x, y, z точки и от скорости движения точки, то есть от . Искомыми неизвестными функциями в этой задаче будут три функцииx = x (t), y = y (t), z = z (t). Эти функции определяются из уравнений динамики:
Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t)и y (t):
Рассмотрим простейшие системы дифференциальных уравнений.
Системы дифференциальных уравнений первого порядка
Система n уравнений первого порядка с n неизвестными функциями имеет вид: (7.38)
где x — независимая переменная, y1, y2, . yn — неизвестные функции.
Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.
Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.
Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия: (7.39)
Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):
Заменим производные их выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение
Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем
Продолжая дальше таким образом, получим
В результате получаем следующую систему уравнений: (7.40)
Из первых (n-1) уравнений определим y2, y3, . yn: (7.41)
и подставим их значения в последнее уравнение системы (7.40) для определения y1:
Продифференцируем это выражение (n-1) раз, определим как функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем (7.43)
Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.
Пример 1. Проинтегрировать систему
когда заданы начальные условия Решение. Дифференцируем по x первое уравнение, имеем: . Подставляем сюда значение и из системы, получим
Из первого уравнения системы найдем и подставим в полученное нами уравнение: или
Общим решением этого уравнения является (*) и тогда (**)
Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем: 1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6. Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:
Системы линейных дифференциальных уравнений с постоянными коэффициентами
Система дифференциальных уравнений: (7.44) где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t) — неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.
Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.
Будем искать решение системы (7.44) в виде: (7.45)
Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):
Сократим на e kt и преобразуем систему, сведя ее к такой системе: (7.46)
Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:
Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:
Это уравнение называется характеристическим уравнением для системы (7.44).
Рассмотрим отдельные случаи на примерах:
1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:
Пример 2. Найти общее решение системы уравнений:
Решение. Составим характеристическое уравнение: или k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.
Решение системы ищем в виде
Составим систему (7.46) для корня k1 и найдем и : или
Откуда Положив получим Итак, мы получили решение системы:
Далее составляем систему (7.46) для k = 4:
Откуда Получим второй решение системы: Общее решение системы будет:
2) Корни характеристического уравнения различны, но среди них есть комплексные:
k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:
(7.47)
(7.48)
Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения: (7.49) где — действительные числа, которые определяются через .
Соответствующие комбинации функций (7.49) войдут в общий решение системы.
Пример 3. Найти общее решение системы
Решение. Составляем характеристическое уравнение: или k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .
Подставляем поочередно k1, k2 в систему (7.46), найдем
Запишем уравнение (7.47) и (7.48) для наших данных
Перепишем эти решения в таком виде:
За частные решения можно взять отдельно действительные и отдельно мнимые части:
Общим решением системы будет
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
📸 Видео
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать