Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Видео:15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравненияСкачать

15 Метод Ньютона (Метод касательных) Ручной счет Численные методы решения нелинейного уравнения

Сходимость метода Ньютона

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Выясним основные условия сходимости последовательности значений , вычисляемых по формуле (2.15), к корню уравнения (2.1). Предполагая, что дважды непрерывно дифференцируема, разложим в ряд Тейлора в окрестности k-го приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Разделив последнее соотношение на и перенеся часть слагаемых из левой части в правую, получим:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Учитывая, что выражение в квадратных скобках согласно (2.15) равно , переписываем это соотношение в виде

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Из (2.16) следует оценка

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Очевидно, что ошибка убывает, если

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Полученное условие означает, что сходимость зависит от выбора начального приближения.

Оценка (2.17) характеризует скорость убывания погрешности для метода Ньютона: на каждом шаге погрешность пропорциональна квадрату погрешности на предыдущем шаге. Следовательно, метод Ньютона обладает квадратичной сходимостью.

Видео:Метод Ньютона (метод касательных) Пример РешенияСкачать

Метод Ньютона (метод касательных) Пример Решения

Выбор начального приближения в методе Ньютона

Как следует из условия (2.18) сходимость итерационной последовательности, получаемой в методе Ньютона, зависит от выбора начального приближения . Это можно заметить и из геометрической интерпретации метода. Так, если в качестве начального приближения взять точку (рис. 2.9), то на сходимость итерационного процесса рассчитывать не приходится.

Если же в качестве начального приближения выбрать точку , то получим сходящуюся последовательность.

В общем случае, если задан отрезок , содержащий корень, и известно, что функция монотонна на этом отрезке, то в качестве начального приближения можно выбрать ту границу отрезка , где совпадают знаки функции и второй производной . Такой выбор начального приближения гарантирует сходимость метода Ньютона при условии монотонности функции на отрезке локализации корня.

Видео:МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравненийСкачать

МЗЭ 2021 Лекция 11 Метод Ньютона для решения систем нелинейных уравнений

Численные методы: решение нелинейных уравнений

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Задачи решения уравнений постоянно возникают на практике, например, в экономике, развивая бизнес, вы хотите узнать, когда прибыль достигнет определенного значения, в медицине при исследовании действия лекарственных препаратов, важно знать, когда концентрация вещества достигнет заданного уровня и т.д.

В задачах оптимизации часто необходимо определять точки, в которых производная функции обращается в 0, что является необходимым условием локального экстремума.

В статистике при построении оценок методом наименьших квадратов или методом максимального правдоподобия также приходится решать нелинейные уравнения и системы уравнений.

Итак, возникает целый класс задач, связанных с нахождением решений нелинейных уравнений, например, уравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияили уравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи т.д.

В простейшем случае у нас имеется функция Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, заданная на отрезке ( a , b ) и принимающая определенные значения.

Каждому значению x из этого отрезка мы можем сопоставить число Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, это и есть функциональная зависимость, ключевое понятие математики.

Нам нужно найти такое значение Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияпри котором Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениятакие Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияназываются корнями функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Визуально нам нужно определить точку пересечения графика функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения с осью абсцисс.

Видео:Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14Скачать

Методы решения систем нелинейных уравнений. Метод Ньютона. Численные методы. Лекция 14

Метод деления пополам

Простейшим методом нахождения корней уравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияявляется метод деления пополам или дихотомия.

Этот метод является интуитивно ясным и каждый действовал бы при решении задачи подобным образом.

Алгоритм состоит в следующем.

Предположим, мы нашли две точки Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, такие что Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияимеют разные знаки, тогда между этими точками находится хотя бы один корень функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Поделим отрезок Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияпополам и введем среднюю точку Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Тогда либо Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, либо Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Оставим ту половину отрезка, для которой значения на концах имеют разные знаки. Теперь этот отрезок снова делим пополам и оставляем ту его часть, на границах которой функция имеет разные знаки, и так далее, достижения требуемой точности.

Очевидно, постепенно мы сузим область, где находится корень функции, а, следовательно, с определенной степенью точности определим его.

Заметьте, описанный алгоритм применим для любой непрерывной функции.

К достоинствам метода деления пополам следует отнести его высокую надежность и простоту.

Недостатком метода является тот факт, что прежде чем начать его применение, необходимо найти две точки, значения функции в которых имеют разные знаки. Очевидно, что метод неприменим для корней четной кратности и также не может быть обобщен на случай комплексных корней и на системы уравнений.

Порядок сходимости метода линейный, на каждом шаге точность возрастает вдвое, чем больше сделано итераций, тем точнее определен корень.

Видео:Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравненийСкачать

Методы численного анализа - Метод Ньютона, секущих для решения систем нелинейных уравнений

Метод Ньютона: теоретические основы

Классический метод Ньютона или касательных заключается в том, что если Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— некоторое приближение к корню Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияуравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, то следующее приближение определяется как корень касательной к функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, проведенной в точке Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Уравнение касательной к функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияв точке Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияимеет вид:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

В уравнении касательной положим Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода касательных квадратичная, порядок сходимости равен 2.

Таким образом, сходимость метода касательных Ньютона очень быстрая.

Запомните этот замечательный факт!

Без всяких изменений метод обобщается на комплексный случай.

Если корень Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияявляется корнем второй кратности и выше, то порядок сходимости падает и становится линейным.

Упражнение 1. Найти с помощью метода касательных решение уравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияна отрезке (0, 2).

Упражнение 2. Найти с помощью метода касательных решение уравнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияна отрезке (1, 3).

К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, в противной ситуации сходимость есть лишь в некоторой окрестности корня.

Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.

Видео:Метод касательных (метод Ньютона)Скачать

Метод касательных (метод Ньютона)

Визуализация метода Ньютона

Метод Ньютона (метод касательных) применяется в том случае, если уравнение f(x) = 0 имеет корень Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, и выполняются условия:

1) функция y= f(x) определена и непрерывна при Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения;

2) f(af(b) 0. Таким образом, выбирается точка с абсциссой x0, в которой касательная к кривой y=f(x) на отрезке [a;b] пересекает ось Ox. За точку x0 сначала удобно выбирать один из концов отрезка.

Рассмотрим метод Ньютона на конкретном примере.

Пусть нам дана возрастающая функция y = f(x) =x 2 -2, непрерывная на отрезке (0;2), и имеющая f ‘(x) = 2x > 0 и f »(x) = 2 > 0.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Уравнение касательной в общем виде имеет представление:

В нашем случае: y-y0=2x0·(x-x0). В качестве точки x0 выбираем точку B1(b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B1, и обозначаем точку пересечения касательной и оси Ox точкой x1. Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6.

Точка пересечения касательной и оси Ox: x1 = Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рисунок 2. Результат первой итерации

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x1, получаем точку В2 =(1.5; 0.25). Снова проводим касательную к функции y = f(x) в точке В2, и обозначаем точку пересечения касательной и оси Ox точкой x2.

Точка пересечения касательной и оси Ox: x2 = Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рисунок 3. Вторая итерация метода Ньютона

Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x2, получаем точку В3 и так далее.

В3 = (Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения)

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рисунок 4. Третий шаг метода касательных

Первое приближение корня определяется по формуле:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения= 1.5.

Второе приближение корня определяется по формуле:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения= Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Третье приближение корня определяется по формуле:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Таким образом, i-ое приближение корня определяется по формуле:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e — до выполнения неравенства |xixi-1|

using namespace std;

float f(double x) //возвращает значение функции f(x) = x^2-2

float df(float x) //возвращает значение производной

float d2f(float x) // значение второй производной

int _tmain(int argc, _TCHAR* argv[])

int exit = 0, i=0;//переменные для выхода и цикла

double x0,xn;// вычисляемые приближения для корня

double a, b, eps;// границы отрезка и необходимая точность

cin>>a>>b; // вводим границы отрезка, на котором будем искать корень

cin>>eps; // вводим нужную точность вычислений

if (a > b) // если пользователь перепутал границы отрезка, меняем их местами

if (f(a)*f(b)>0) // если знаки функции на краях отрезка одинаковые, то здесь нет корня

cout 0) x0 = a; // для выбора начальной точки проверяем f(x0)*d2f(x0)>0 ?

xn = x0-f(x0)/df(x0); // считаем первое приближение

cout eps) // пока не достигнем необходимой точности, будет продолжать вычислять

xn = x0-f(x0)/df(x0); // непосредственно формула Ньютона

> while (exit!=1); // пока пользователь не ввел exit = 1

Посмотрим, как это работает. Нажмем на зеленый треугольник в верхнем левом углу экрана, или же клавишу F5.

Если происходит ошибка компиляции «Ошибка error LNK1123: сбой при преобразовании в COFF: файл недопустим или поврежден», то это лечится либо установкой первого Service pack 1, либо в настройках проекта Свойства -> Компоновщик отключаем инкрементную компоновку.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рис. 4. Решение ошибки компиляции проекта

Мы будем искать корни у функции f(x) = x2-2.

Сначала проверим работу приложения на «неправильных» входных данных. На отрезке [3; 5] нет корней, наша программа должна выдать сообщение об ошибке.

У нас появилось окно приложения:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рис. 5. Ввод входных данных

Введем границы отрезка 3 и 5, и точность 0.05. Программа, как и надо, выдала сообщение об ошибке, что на данном отрезке корней нет.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рис. 6. Ошибка «На этом отрезке корней нет!»

Выходить мы пока не собираемся, так что на сообщение «Exit?» вводим «0».

Теперь проверим работу приложения на корректных входных данных. Введем отрезок [0; 2] и точность 0.0001.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Рис. 7. Вычисление корня с необходимой точностью

Как мы видим, необходимая точность была достигнута уже на 4-ой итерации.

Чтобы выйти из приложения, введем «Exit?» => 1.

Видео:Метод простых итераций пример решения нелинейных уравненийСкачать

Метод простых итераций пример решения нелинейных уравнений

Метод секущих

Чтобы избежать вычисления производной, метод Ньютона можно упростить, заменив производную на приближенное значение, вычисленное по двум предыдущим точкам:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения/Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Итерационный процесс имеет вид:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

где Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Это двухшаговый итерационный процесс, поскольку использует для нахождения последующего приближения два предыдущих.

Порядок сходимости метода секущих ниже, чем у метода касательных и равен в случае однократного корня Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Эта замечательная величина называется золотым сечением:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Убедимся в этом, считая для удобства, что Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Таким образом, с точностью до бесконечно малых более высокого порядка

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Отбрасывая остаточный член, получаем рекуррентное соотношение, решение которого естественно искать в виде Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

После подстановки имеем: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Для сходимости необходимо, чтобы Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениябыло положительным, поэтому Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Поскольку знание производной не требуется, то при том же объёме вычислений в методе секущих (несмотря на меньший порядок сходимости) можно добиться большей точности, чем в методе касательных.

Отметим, что вблизи корня приходится делить на малое число, и это приводит к потере точности (особенно в случае кратных корней), поэтому, выбрав относительно малое Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, выполняют вычисления до выполнения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи продолжают их пока модуль разности соседних приближений убывает.

Как только начнется рост, вычисления прекращают и последнюю итерацию не используют.

Такая процедура определения момента окончания итераций называется приемом Гарвика.

Видео:10 Численные методы решения нелинейных уравненийСкачать

10 Численные методы решения нелинейных уравнений

Метод парабол

Рассмотрим трехшаговый метод, в котором приближение Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияопределяется по трем предыдущим точкам Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Для этого заменим, аналогично методу секущих, функцию Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияинтерполяционной параболой проходящей через точки Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

В форме Ньютона она имеет вид:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Точка Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияопределяется как тот из корней этого полинома, который ближе по модулю к точке Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Порядок сходимости метода парабол выше, чем у метода секущих, но ниже, чем у метода Ньютона.

Важным отличием от ранее рассмотренных методов, является то обстоятельство, что даже если Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениявещественна при вещественных Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи стартовые приближения выбраны вещественными, метод парабол может привести к комплексному корню исходной задачи.

Этот метод очень удобен для поиска корней многочленов высокой степени.

Видео:10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравненияСкачать

10 Метод Ньютона (Метод касательных) C++ Численные методы решения нелинейного уравнения

Метод простых итераций

Задачу нахождения решений уравнений можно формулировать как задачу нахождения корней: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, или как задачу нахождения неподвижной точкиСходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Пусть Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— сжатие: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения(в частности, тот факт, что Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— сжатие, как легко видеть, означает, чтоСходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения).

По теореме Банаха существует и единственна неподвижная точка Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Она может быть найдена как предел простой итерационной процедуры

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

где начальное приближение Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— произвольная точка промежутка Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Если функция Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениядифференцируема, то удобным критерием сжатия является число Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Действительно, по теореме Лагранжа

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Таким образом, если производная меньше единицы, то Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияявляется сжатием.

Условие Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениясущественно, ибо если, например, Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияна [0,1] , то неподвижная точка отсутствует, хотя производная равна нулю. Скорость сходимости зависит от величины Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Чем меньше Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, тем быстрее сходимость.

Рассмотрим уравнение: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Если в качестве Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениявзять функцию Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, то соответствующая итерационная процедура будет иметь вид: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Как нетрудно убедиться, метод итераций в данном случае расходится при любой начальной точке Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, не совпадающей с собственно неподвижной точкой Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Однако можно в качестве Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияможно взять, например, функцию Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Соответствующая итерационная процедура имеет вид: Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Эти итерации сходятся к неподвижной точке для любого начального приближения Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения:

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Действительно, в первом случае Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, т.е. для выполнения условия Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениянеобходимо чтобы Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, но тогда Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Таким образом, отображение Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениясжатием не является.

Рассмотрим Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, неподвижная точка та же самая, ситуация другая. Здесь, хотя формально производная может быть довольно большой (при малых ж), однако уже на следующем шаге она будет меньше 1.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

т.е. такой итерационный процесс всегда сходится.

Метод Ньютона представляет собой частный случай метода простых итераций.

Здесь Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениянетрудно убедиться, что при Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениясуществует окрестность корня, в которой Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

то если Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениякорень кратности Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, то в его окрестности Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи, следовательно,Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения.

Если Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— простой корень, то сходимость метода касательных квадратичная (то есть порядок сходимости равен 2).

Поскольку Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, то

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения

Таким образом, сходимость метода Ньютона очень быстрая.

Видео:Метод Ньютона (касательных) и хорд Численное решение уравнения c++Скачать

Метод Ньютона (касательных) и хорд  Численное решение уравнения c++

Нахождение всех корней уравнения

Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно.

Чтобы найти другие корни, можно было бы брать новые стартовые точки и применять метод вновь, но нет гарантии, что при этом итерации сойдутся к новому корню, а не к уже найденному, если вообще сойдутся.

Для поиска других корней используется метод удаления корней.

Пусть Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения— корень функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, рассмотрим функциюСходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Точка Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениябудет являться корнем функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияна единицу меньшей кратности, чемСходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, при этом все остальные корни у функций Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближениясовпадают с учетом кратности.

Применяя тот или иной метод нахождения корней к функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, мы найдем новый корень Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения(который может в случае кратных корней и совпадать с Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения). Далее можно рассмотреть функцию Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияи искать корни у неё.

Повторяя указанную процедуру, можно найти все корни Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближенияс учетом кратности.

Заметим, что когда мы производим деление на тот или иной корень Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, то в действительности мы делим лишь на найденное приближение Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения. Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз.

Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции Сходимость метода ньютона для решения нелинейного уравнения зависит от выбора начального приближения, используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.

Мы рассмотрели решение уравнений только в одномерном случае, нахождение решений многомерных уравнений существенно более трудная задача.

Видео:4.2 Решение систем нелинейных уравнений. МетодыСкачать

4.2 Решение систем нелинейных уравнений. Методы

Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

Видео:Численные методы решения нелинейного уравнени Теория Шаговый Метод половинного деления Метод НьютонаСкачать

Численные методы решения нелинейного уравнени Теория Шаговый Метод половинного деления Метод Ньютона

Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.

Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas ( лат .О б анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу , и в работе De metodis fluxionum et serierum infinitarum ( лат.Метод флюксий и бесконечные ряды) или Geometria analytica ( лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn , а последовательность полиномов и в результате получал приближённое решение x.

Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.

Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .

Рис.1 . График изменение функции

Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α ( ). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения . Точка пересечения касательной с осью Ox будет являться следующей точкой приближения . В соответствии с рассматриваемым методом расчет приближенного значения корня на i -итерации производится по формуле:

Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.

Условием окончания итерационного процесса является выполнение следующего условия:

где ˗ допустимая погрешность определения корня.

Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.

Математическое обоснование

Пусть дана вещественная функция , которая определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень рассматриваемой функции.

Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение приводят к эквивалентному уравнению при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции должен соответствовать экстремуму функции .

Производная сжимающего отображения определяется в следующем виде:

Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при необходимо обеспечить условие . В результате получим выражение для определения переменной :

С учетом этого сжимающая функция прием следующий вид:

Таким образом, алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной

1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число ) и начальный шаг итерации ( ).

2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:

3. Проверяем приближенное значение корня на предмет заданной точности, в случае:

— если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.

— если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.

Пример решения уравнений

по методу Ньютона для уравнения с одной переменной

В качестве примера, рассмотрим решение нелинейного уравнения методом Ньютона для уравнения с одной переменной . Корень необходимо найти с точностью в качестве первого приближения .

Вариант решения нелинейного уравнения в программном комплексе MathCAD представлен на рисунке 3.

Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).

Рис.2 . Результаты расчета по методу Ньютона для уравнения с одной переменной

Для обеспечения заданной точности при поиске приближенного значения корня уравнения в диапазоне необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

Рис.3 . Листинг программы в MathCad

Модификации метода Ньютона для уравнения с одной переменной

Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.

Упрощенный метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’( xn ) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:

Таким образом, на каждом шаге расчета строятся прямые , которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.

Разностный метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:

Двух шаговый метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

В результате приближенное значение корня функции f(x) будет определяться следующим выражением:

Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями и . В методе необходимо задавать два начальных приближения и . Скорость сходимости метода будет линейной.

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

🎥 Видео

11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравненияСкачать

11 Метод Ньютона (Метод касательных) Mathcad Численные методы решения нелинейного уравнения

Метод простой итерации Пример РешенияСкачать

Метод простой итерации Пример Решения

1 3 Решение нелинейных уравнений методом простых итерацийСкачать

1 3 Решение нелинейных уравнений методом простых итераций

12 Метод Ньютона (Метод касательных) Excel Calc Численные методы решения нелинейного уравненияСкачать

12 Метод Ньютона (Метод касательных) Excel Calc Численные методы решения нелинейного уравнения

Алгоритмы С#. Метод Ньютона для решения систем уравненийСкачать

Алгоритмы С#. Метод Ньютона для решения систем уравнений

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравненийСкачать

Вычислительная математика. Лекция 4. Решение нелинейных уравнений и систем уравнений

1,2 Решение нелинейных уравнений методом хордСкачать

1,2 Решение нелинейных уравнений методом хорд

Лекция 2. Методы решения нелинейных уравнений. 18.02.2021Скачать

Лекция 2. Методы решения нелинейных уравнений. 18.02.2021
Поделиться или сохранить к себе: