О чем эта статья:
6 класс, 7 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Определение показательного уравнения
- Свойства степеней
- Простейшие показательные уравнения
- Какие показательные уравнения называют простейшими
- Как решать простейшие показательные уравнения? Алгоритм
- Теоретическое обоснование
- Решение общими методами
- Примеры решений
- Показательные уравнения — алгоритмы и примеры вычисления
- Основные понятия и свойства
- Примеры решения показательных уравнений
- Задание 1
- Задание 2
- Задание 3
- Задание 4
- Задание 5
- Задание 6
- 📽️ Видео
Видео:11 класс, 12 урок, Показательные уравненияСкачать
Определение показательного уравнения
Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.
Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:
Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.
С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a
Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.
Свойства степеней
Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.
Видео:Показательные уравнения. 11 класс.Скачать
Простейшие показательные уравнения
После того, как мы разобрались с вопросом, что такое показательные уравнения, следует остановиться на так называемых простейших показательных уравнениях. Тому есть две причины. Первая – изучение чего-то нового всегда логично начинать с самого простого. Вторая – к простейшим показательным уравнениям часто сводятся решения более сложных показательных уравнений. Так давайте выясним, какие показательные уравнения называют простейшими, и научимся решать простейшие показательные уравнения.
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Какие показательные уравнения называют простейшими
простейшими показательными уравнениями называют уравнения a x =b , где a и b – числа, причем a>0 и a≠1 .
В точности так про простейшие показательные уравнения сказано в учебнике Колмогорова [1, с. 229].
Прежде чем привести примеры простейших показательных уравнений, отвечающих этому определению, считаем нужным сказать пару слов об условиях a>0 и a≠1 .
Первое из них объясняется определением степени, ведь степень с действительным показателем мы определили лишь для положительных оснований. Это не означает, что не нужно изучать уравнения a x =b при a и a=0 , ведь они не лишены смысла. Уравнения a x =b при a имеют смысл на множестве целых чисел, а уравнения a x =b при a=0 , то есть, уравнения 0 x =b , имеют смысл на множестве положительных действительных чисел. Решение уравнений a x =b при a имеет свою специфику, с которой лучше разбираться отдельно. Уравнения a x =b при a=0 есть частный случай уравнений, сводящихся к числовым равенствам.
А зачем в определении простейших показательных уравнений второе условие a≠1 ? Это условие исключает из рассмотрения уравнения 1 x =b . Это тоже уравнения, сводящиеся к числовым равенствам.
Итак, дальше в этой статье мы считаем, что a>0 , a≠1 .
Теперь обещанные примеры. Начнем с уравнения 2 x =8 . Это есть уравнение a x =b при a=2 , b=8 , значит, это простейшее показательное уравнение. Аналогично, 3 x =7 , , 2 x =0 , 5 x =−25 – простейшие показательные уравнения.
Еще вспомним, что числа могут быть записаны не только в виде отдельных чисел, но и в виде числовых выражений. Этот факт и данное выше определение позволяют нам утверждать, что уравнения A x =B , где A и В – числовые выражения, причем A>0 , A≠1 , это тоже простейшие показательные уравнения. Так 5 x =5 3 , , – это простейшие показательные уравнения.
Встречаются и немного отличающиеся взгляды на простейшие показательные уравнения. Вот тому пример
Простейшим показательным уравнением является уравнение a x =b , где a и b – данные положительные числа ( a≠1 ), а x – неизвестная величина [2, с. 111].
От первого определения оно отличается тем, что дано ограничение на число b – оно подразумевается положительным. В первом определении про число b ничего не сказано, поэтому, оно подразумевается любым (отрицательным, нулем, положительным). Если придерживаться второго определения, то два из приведенных выше уравнений, а именно, 2 x =0 и 5 x =−25 , не будут простейшими.
Считать или не считать простейшими уравнения a x =b при b=0 и b – судить не нам. Главное – уметь их решать. Давайте научимся это делать.
Видео:ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать
Как решать простейшие показательные уравнения? Алгоритм
Судя по названию, простейшие показательные уравнения a x =b , где a и b – числа, причем a>0 , a≠1 , должны решаться легко. Так оно и есть:
- Если b или b=0 , то уравнение a x =b не имеет решений.
- Если b>0 , то исходное уравнение a x =b нужно преобразовать к виду a x =a c (кроме случаев, когда оно сразу имеет такой вид), откуда очевиден единственный корень x=c .
Например, простейшие показательные уравнения 3 x =−5 и (0,3) x =0 не имеют решений, так как в правой части первого из них находится отрицательное число, а в правой части второго – нуль. А чтобы решить простейшее показательное уравнение 2 x =8 , его нужно преобразовать к виду 2 x =2 3 , что позволяет увидеть его единственное решение x=3 .
После знакомства с логарифмом появляется возможность обходиться без преобразования исходного простейшего показательного уравнения a x =b при b>0 к виду a x =a c , а сразу записывать решение через логарифм как x=logab .
Почему решать простейшие показательные уравнения нужно именно так, обоснуем в следующем пункте. А сейчас запишем алгоритм решения простейших показательных уравнений:
Чтобы решить простейшее показательное уравнение a x =b , где a и b – числа, причем a>0 , a≠1 , надо
- Убедиться, что перед нами именно простейшее показательное уравнение. Для этого нужно проверить, что уравнение имеет вид a x =b , и убедиться, что a>0 и a≠1 .
- Посмотреть, каким числом является b : отрицательным, нулем, или положительным.
- Если b или b=0 , то сделать вывод об отсутствии решений.
- Если b>0 , то перейти к следующему шагу.
- Если b представляет собой степень a c , то перейти к следующему шагу. В противном случае представить число b в виде степени a c , то есть, перейти от исходного уравнения a x =b к уравнению a x =a c .
- От равенства степеней a x =a c перейти к равенству их показателей, то есть, к равенству x=c . Это даст единственный корень исходного уравнения.
Видео:Показательные уравнения. Задание 13 | Математика ЕГЭ | УмскулСкачать
Теоретическое обоснование
Решение показательных уравнений a x =b , где a>0 , a≠1 , b – некоторое число, базируется на следующих двух утверждениях:
- Если b=0 или b , то уравнение a x =b не имеет решений.
- Если b>0 , то уравнение a x =b имеет единственное решение x=logab , где logab – логарифм числа b по основанию a . В частности, если число b представляет собой некоторую степень числа a , то есть, b=a c , то единственное решение уравнения есть x=c .
Сразу заметим, что сейчас в школе показательные уравнения обычно изучают до знакомства с логарифмом. По этой причине сначала обходят обращение к логарифму. И делают это так: рассматривают только такие простейшие показательные уравнения, в которых число b представляет собой некоторую степень числа a . То есть, сначала рассматривают уравнения a x =a c , где c – некоторое число. Единственным решением уравнения a x =a c является x=c . А уже после знакомства с логарифмом возвращаются к показательным уравнениям, и уже тогда говорят про единственное решение простейшего показательного уравнения a x =b в виде x=logab .
Сейчас мы приведем доказательство этих утверждений, чтобы стало понятно, откуда они произрастают. После этого рассмотрим решения нескольких простейших показательных уравнений, которые покрывают все случаи: и когда b , и когда b=0 , и когда b можно представить в виде степени числа a без использования логарифма, и когда без логарифма не обойтись.
Если b=0 или b , то уравнение a x =b , где a>0 , a≠1 не имеет решений.
Из определения степени вытекает, что если a>0 , то a x >0 при любом значении переменной x . Из этого следует, что ни при каком значении переменной x равенство a x =b не может быть достигнуто, если b=0 или b . Значит, если b=0 или b , то уравнение a x =b не имеет решений, что и требовалось доказать.
Если b>0 , то уравнение a x =b имеет единственное решение x=logab , где logab – логарифм числа b по основанию a . В частности, если число b представляет собой некоторую степень числа a , то есть, b=a c , то единственное решение уравнения есть x=c .
Доказательство позволяют провести известные свойства показательной функции y=a x , а именно, область значений показательной функции и свойство монотонности.
Для доказательства существования корня у простейшего показательного уравнения a x =b при b>0 нам потребуется известная область значений показательной функции y=a x . Ею является множество всех положительных чисел. Так как у нас по условию b>0 , то b принадлежит области значений показательной функции y=a x . То есть, функция y=a x обязательно принимает значение b . Из этого следует, что уравнение a x =b имеет решение.
Мы доказали, что если b>0 , то простейшее показательное уравнение a x =b обязательно имеет решение. Докажем, что это решение единственное. Для этого обопремся на монотонность показательной функции и воспользуемся методом от противного. Предположим, что кроме корня x1 уравнение a x =b имеет еще один корень x2 , отличный от x1 , то есть, x1≠x2 . Так как и x1 и x2 – корни уравнения a x =b , то a x1 =b и a x2 =b – верные числовые равенства. Свойства числовых равенств позволяют нам проводить почленное вычитание верных числовых равенств. Вычтем из равенства a x1 =b равенство a x2 =b , это дает a x1 −a x2 =b−b и дальше a x1 −a x2 =0 , что то же самое a x1 =a x2 . Но из монотонности функции y=a x и из неравенства x1≠x2 следует, что либо a x1 >a x2 , либо a x1 x2 . А это противоречит результату a x1 =a x2 . Так доказано, что простейшее показательное уравнение a x =b при b>0 имеет единственный корень.
Итак, мы доказали что уравнение a x =b при b>0 имеет корень, причем единственный. Докажем, что этим корнем является логарифм числа b по основанию a , то есть, x=logab . Это напрямую следует из определения логарифма.
Остается показать, что если b=a c , то корнем уравнения a x =b является x=c . Это очевидно. Уравнение a x =b при b=a c имеет вид a x =a c , корень этого уравнения очевиден x=c . Здесь к месту напомнить, что две степени с одинаковыми положительными и не равными единице основаниями равны тогда и только тогда, когда их показатели равны (это известное свойство степеней). К этому же результату мы придем, если будем действовать через логарифмы: x=logab – корень уравнения a x =b , при b=a c имеем x=logab=logaa c =с .
Утверждение полностью доказано.
Видео:Показательные уравнения за 50 минут | Математика ЕГЭ 10 класс | УмскулСкачать
Решение общими методами
Алгоритм с его теоретическим обоснованием представляет собой полноценный метод решения простейших показательных уравнений. Однако стоит иметь в виду, что простейшие показательные уравнения можно решать при помощи хорошо известных методов решения уравнений. А именно:
- Вывод о том, что простейшее показательное уравнение a x =b при b или b=0 не имеет решений, можно сделать на основании метода оценки.
- Преобразование простейшего показательного уравнения a x =b при b>0 к виду a x =a c проводится в соответствии методом решения уравнений через преобразования, а следующий переход к равенству x=c делается в согласии с методом уравнивания показателей, который по сути является методом освобождения от внешней функции.
- Простейшее показательное уравнение a x =b при b>0 можно решать и методом логарифмирования, подразумевающим переход от a x =b к logaa x =logab . А следующий переход от уравнения logaa x =logab к x=logab , дающий нам конечный результат, проводится в согласии с методом решения уравнений через преобразования.
Видео:Показательные уравнения — что это такое и как решатьСкачать
Примеры решений
В предыдущих пунктах мы разобрали теорию решения простейших показательных уравнений и записали алгоритм. Давайте перейдем к практике, и разберем решения нескольких характерных примеров.
Сначала покажем решения уравнений a x =b , где a>0 , a≠1 , а число b в правой части — отрицательное. Выше мы показали, что такие уравнения не имеют решений.
б)
в)
Теперь покажем решения простейших показательных уравнения с нулями в правых частях. Такие уравнения тоже не имеют решений.
б)
Теперь давайте рассмотрим примеры решения простейших показательных уравнений, отвечающих виду a x =a c . Их единственное решение очевидно: x=c .
Решите показательные уравнения:
а)
б)
в)
г)
В предыдущем примере мы имели дело с очень удобными для решения простейшими показательными уравнениями, имеющими вид a x =a c . Давайте рассмотрим решения чуть более сложных уравнений, которые изначально имеют вид, отличный от a x =a c , но могут быть приведены к нему посредством преобразования числовых выражений, находящихся в правых частях.
б)
в)
г)
Но иногда число или числовое выражение в правой части уравнения невозможно представить в виде степени с нужным основанием без использования логарифма. Так что стоит остановиться на случаях, когда без логарифмов не обойтись.
б)
На простейшие показательные уравнения внешне похожи уравнения a f(x) =b , где f(x) – некоторое выражение с переменной x . Например, 2 x−1 =2 2 , . Про их решение мы поговорим чуть позже. До этого нужно разобрать алгоритм решения показательных уравнений.
Видео:Показательные уравнения. Часть 1 из 3. Простейшие (?)Скачать
Показательные уравнения — алгоритмы и примеры вычисления
Показательные уравнения, как и любые другие, требуют поиска неизвестной переменной. Особенность в том, что она или выражение с ней находится в показателе степени.
Видео:Это просто! Как решать Показательные Неравенства?Скачать
Основные понятия и свойства
В показательных уравнениях, которые часто называют степенными, в основании находятся исключительно числа. Переменная же есть только в показателе.
Она может быть одна или являться частью выражения. Если она появляется в другом месте, приходится иметь дело с уравнениями смешанного типа.
Школьники знакомятся с простыми вычислениями уже в 7 классе, более сложные решают выпускники и студенты вузов. Если фигурирует несколько переменных и представлено больше одного уравнения, говорят об их системе.
Тогда необходимо выразить одну неизвестную через другую и искать результат методом подстановки. Поэтому умение находить значения, в которые возводят натуральные числа, пригодится на долгие годы.
Изучаются также и показательные функции: она может быть восходящей и нисходящей, в зависимости от значения переменной или выражения.
2 x = 4 – показательное уравнение с иксом в степени;
2 x = x + 12 – смешанное, ведь икс находится также и в основании.
2 – основание, оно должно соответствовать двум условиям, а именно: быть больше нуля и отличаться от единицы;
Если вместо знака «=» используются обозначения «>», « 1 = 9. Если же возвести число в степень ноль, то результат всегда будет одинаковым, а именно, равным единице: 9 0 = 1.
2. Если математическое выражение возводится в отрицательное значение, то его можно заменить дробью, где числитель – единица, а знаменатель первоначальное выражение, но уже в положительной степени. Числитель – значение, находящееся над чертой, знаменатель – под ней. Математически правило записывается в следующем виде:
3. Чтобы возвести число в степень, нужно умножить его на себя такое количество раз, которое равно ее значению, то есть р 5 = р·р·р·р·р.
4. Если нужно умножить два положительных числа, отличных от единицы и равных между собой, то нужно сложить их показатели и возвести в полученное значение основание: p 5 ·p 3 = p 5+3 = p 8 .
5. Когда требуется разделить одно число на другое, имеющие отличные показатели, нужно вычесть из одного другой и возвести в полученное значение неизменное основание: p 9 /p 3 = p 9-3 = p 6 .
6. Если необходимо возвести одну степень в другую, то нужно их перемножить. Само основание при этом остается без изменений. Его нужно возвести в полученное после арифметических действий значение: (p 3 ) 4 = p 3*4 = p 12 .
Применение свойств и правил помогает упростить выражения, быстрее произвести вычисления и получить результат.
Видео:✓ Показательное уравнение | ЕГЭ-2017. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать
Примеры решения показательных уравнений
Закрепить материал помогут подробные объяснения при решении показательных уравнений. Разъяснения на практике помогут изучить сложные моменты и облегчат усвоение знаний.
Задание 1
Упростить и решить уравнение: 5 3x+14 = 5 7+2x
В обеих частях примера одинаковые основания, значит, можно приравнять математические выражения, находящиеся в показателе. В результате получится:
Путем переноса чисел в одну часть, а переменных в другую, не сложно решить пример. Главное, не забывать менять знак на противоположный, плюс на минус и наоборот:
Задание 2
Выполнить вычисление и найти х:
Основания обеих частей примера – 4, оно не меняется, следовательно, можно воспользоваться изученными свойствами и получить простейшее уравнение:
Задание 3
Упростить и найти значение х:
Дроби в примере разные. Поэтому приравнять их показатели сразу не получится. Но стоит обратить внимание, что числитель одной равен знаменателю другой и наоборот.
Чтобы решить, придется вспомнить о правиле возведения в отрицательную степень, когда выражение представляется в виде дроби. Значит, числитель можно поменять местами со знаменателем.
В показателе при этом появится знак «минус»:
При равных основаниях приравниваются степени: -х = 2х + 3.
Далее придется выполнить простое задание, чтобы найти неизвестную переменную:
Задание 4
Вычислить: (3 x ) 2 = 81.
Можно представить в следующем виде: (3 x ) 2 = 3 4 .
Если воспользоваться изученными свойствами, получается: 3 2x = 3 4 .
Далее выполнить простые действия, чтобы получить результат:
Задание 5
Решить уравнение: 5 x+1 + 7·5 x-2 = 132.
Если воспользоваться свойством степеней, применяемых для умножения значений с одинаковым основанием, можно преобразовать уравнение. Общий множитель прежде всего нужно поставить за скобки, это правило регулярно применяется при решении:
5 x-2 (5 3 + 7) = 132;
Если обе части уравнения разделить или умножить на одно и то же число, результат не изменится. В данном случае необходимо разделить на число 132. Это помогает избавиться от громоздких вычислений, удлиняющих ход решения:
Далее необходимо вспомнить, что любое значение, возведенное в ноль, равно единице:
Остается только приравнять показатели и решить элементарный пример:
Задание 6
Решить показательное уравнение √4 x = 16.
Квадратный корень можно заменить степенью 1/2. Получается, что 4 имеет показатель x/2.
Значит, уравнение преобразуются в следующее:
А дальше необходимо действовать по уже проверенному и закрепленному методу:
Чтобы быстро решать показательные уравнения, нужно знать свойства степеней и умело ими пользоваться на практике. Это позволит легко находить неизвестные переменные. Полученные знания обязательно пригодятся для вычисления более сложных задач.
Существуют онлайн калькуляторы, позволяющие легко и просто решить степенные уравнения. Требуется просто вписать их в ячейку и немного подождать, пока машина справится с подсчетами. Но гораздо интереснее самому произвести арифметические действия и получить верный результат.
Интернет не всегда есть под рукой, а подобные примеры – основа решения более трудных задач, которые могут встретиться на экзамене ЕГЭ по математике. Например, логарифмических. Они могут содержать тригонометрические элементы и объемные алгебраические конструкции.
📽️ Видео
Сложные показательные уравнения: примеры и способы решенияСкачать
ЕГЭ.Как решать показательные уравнения.Скачать
Решение показательных уравнений 1Скачать
ПОКАЗАТЕЛЬНОЕ УРАВНЕНИЕ С ЛОГАРИФМОМ ЧАСТЬ I. Готовимся к ЕГЭ вместе #shorts #математика #егэ #огэСкачать
Алгебра 10 класс (Урок№22 - Показательные уравнения. Системы показательных уравнений.)Скачать
Как решать Показательные Уравнения? (часть 2)Скачать
Показательные уравнения и неравенстваСкачать
10 класс. Алгебра. Системы показательных уравнений.Скачать
Как решать показательные уравнения.Скачать
Показательные уравнения. #уравнения #математика #егэСкачать