Сборник уравнений для 6 класса с решением

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Видео:Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(Сборник уравнений для 6 класса с решением; 9(Сборник уравнений для 6 класса с решением; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —Сборник уравнений для 6 класса с решениемa; Сборник уравнений для 6 класса с решениемm-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (aСборник уравнений для 6 класса с решением0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

Сборник уравнений для 6 класса с решениемх+3=Сборник уравнений для 6 класса с решениемх+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(Сборник уравнений для 6 класса с решениемх+3)∙9=(Сборник уравнений для 6 класса с решениемх+5)∙9 Далее − по плану.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Тренажер по теме «Решение уравнений» 6 класс

Краткое описание документа:

Данный методический материал разработан для отработки умений решать уравнения, используя свойства уравнений, умений исследовать уравнения, умений строить логические рассуждения и делать выводы.

Тренажер содержит 3 варианта по 12 заданий в каждом.

Данный тренажер может использоваться как материал для самостоятельной работы.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 590 524 материала в базе

Материал подходит для УМК

Сборник уравнений для 6 класса с решением

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С.

§ 41. Решение уравнений

Другие материалы

  • 07.05.2019
  • 718
  • 22

Сборник уравнений для 6 класса с решением

  • 20.04.2019
  • 457
  • 11

Сборник уравнений для 6 класса с решением

  • 02.04.2019
  • 674
  • 5

Сборник уравнений для 6 класса с решением

  • 17.03.2019
  • 697
  • 12

Сборник уравнений для 6 класса с решением

  • 16.02.2019
  • 884
  • 2

Сборник уравнений для 6 класса с решением

  • 15.01.2019
  • 1160
  • 3

Сборник уравнений для 6 класса с решением

  • 08.01.2019
  • 291
  • 0

Сборник уравнений для 6 класса с решением

  • 05.12.2018
  • 311
  • 2

Сборник уравнений для 6 класса с решением

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 12.05.2019 39083
  • DOCX 72.5 кбайт
  • 2965 скачиваний
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Ткачева Ирина Викторовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Сборник уравнений для 6 класса с решением

  • На сайте: 4 года и 7 месяцев
  • Подписчики: 2
  • Всего просмотров: 103810
  • Всего материалов: 9

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:Решение уравнений. Видеоурок 28. Математика 6 классСкачать

Решение уравнений. Видеоурок 28. Математика 6 класс

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.

Сборник уравнений для 6 класса с решением

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

Сборник уравнений для 6 класса с решением

  • Обыкновенные.
  • С параметром.
  • Высшей степени.

    Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

    Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

    Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

    Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

    Обыкновенные тождества

    Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

    Сборник уравнений для 6 класса с решением

  • Раскрыть скобки.
  • Произвести математические преобразования над компонентами уравнения.
  • Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  • Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  • Выполнить проверку, подставив решение в исходное равенство.

    Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  • 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  • 7t 2 −7t 2 +7t-7=7t-7=8.
  • 7t=15.
  • t=2,5.
  • 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

    Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

    Выражения с параметром

    Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

    Сборник уравнений для 6 класса с решением

  • Записать равенство.
  • Раскрыть скобки и привести подобные элементы к общему виду.
  • Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  • Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  • Записать формулу определения корня.
  • При необходимости подставить значение параметра.
  • Проверить результат.

    Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  • t-2+pt=0.
  • Опускается, поскольку в выражении нет скобок.
  • (t+pt)=t (1+p)=2.
  • p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  • t=2/(1+p).
  • При p=0: t=2.
  • 2−2+0*2=0.

    Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)

    . Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

    Понижение степени

    Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

    Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

    Сборник уравнений для 6 класса с решением

    Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  • Написать равенство с неизвестным.
  • Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  • Решить линейные уравнения.
  • Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

    Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  • 3t^2-3=0.
  • 3(t^2-1)=0.
  • Сократить обе части на 3: t^2-1=0.
  • Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  • У уравнения два корня: t1=1 и t2=-1.
  • Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

    Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

    Системы линейного типа

    Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

    Сборник уравнений для 6 класса с решением

  • Записать систему уравнений.
  • Выбрать наиболее простое тождество и выразить одну величину через другую.
  • Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  • Раскрыть скобки и выполнить математические преобразования.
  • Решить уравнение в четвертом пункте.
  • Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  • Найти вторую переменную.
  • Записать результат.
  • Выполнить проверку.

    Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  • 5t-2s=1 и 4t^2-s^2=0.
  • Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  • (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  • 8t=8=>t=1.
  • 5*1-2s=1. Отсюда s=2.
  • 5*1-2*2=1=1 (равенство действительное).

    В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

    Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

    Сборник уравнений для 6 класса с решением

  • Упростить все выражения, входящие в систему.
  • Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  • Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  • Начертить прямоугольную систему координат.
  • Отметить точки, исходя из таблицы, в системе координат.
  • Соединить точки плавными линиями при помощи карандаша.
  • Проделать аналогичные действия над другими тождествами (5 и 6).
  • Определить точки пересечения функций и записать их координаты.

    В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

    Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

    🔥 Видео

    Решение уравнений - математика 6 классСкачать

    Решение уравнений - математика 6 класс

    6 класс, 42 урок, Решение уравненийСкачать

    6 класс, 42 урок, Решение уравнений

    Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

    Решение уравнений ( подобные слагаемые ) . 6 класс .

    Математика 6 класс (Урок№1 - Повторение материала по темам «Обыкновенные дроби» и «Смешанные дроби»)Скачать

    Математика 6 класс (Урок№1 - Повторение материала по темам «Обыкновенные дроби» и «Смешанные дроби»)

    Решение уравнений с дробными числами в 6 классеСкачать

    Решение уравнений с дробными числами в 6 классе

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 класс

    Математика 6 класс. РАСКРЫТИЕ СКОБОК. РЕШЕНИЕ УРАВНЕНИЙ.Скачать

    Математика 6 класс. РАСКРЫТИЕ СКОБОК. РЕШЕНИЕ УРАВНЕНИЙ.

    Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    Решение задач с помощью уравнений. 6 классСкачать

    Решение задач с помощью уравнений. 6 класс

    Как решать уравнения со скобками быстро и правильно. Математика 6 класс.Скачать

    Как решать уравнения со скобками быстро и правильно. Математика 6 класс.

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.Скачать

    Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.

    Математика 6 класс (Урок№50 - Уравнения. Часть 2.)Скачать

    Математика 6 класс (Урок№50 - Уравнения. Часть 2.)

    6 класс - Математика - Пропорции. Решение уравнений с помощью пропорцийСкачать

    6 класс - Математика - Пропорции. Решение уравнений с помощью пропорций
  • Поделиться или сохранить к себе: