- Задачи повышенной сложности по математике 10 — 11 класс с решением и ответами
- Задачи повышенной сложности по математике 10 — 11 класс с решением и ответами.
- Задача 1.
- Задача 2.
- Задача 3.
- Задача 4.
- Задача 5.
- Задача 6.
- Задача 7.
- 10 нерешенных математических задач, с которыми академики бьются и по сей день
- Гипотеза Коллатца
- Проблема Гольдбаха (бинарная)
- Гипотеза о числах-близнецах
- Гипотеза Римана
- Гипотеза Берча и Суиннертон-Дайера
- Проблема плотной упаковки равных сфер
- Проблема развязывания
- Самый большой кардинал
- Что не так с суммой числа π и e?
- Является ли γ рациональной?
- Математика
- 📸 Видео
Видео:Супер нестандартное уравнение. Олимпиада 11 классСкачать
Задачи повышенной сложности по математике 10 — 11 класс с решением и ответами
Видео:Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Задачи повышенной сложности по математике 10 — 11 класс с решением и ответами.
Задача 1.
Найдите все простые числа p и q такие, что p + q = (p – q)³.
Решение:
Ответ: p = 5, q = 3.
Пусть p – q = n, тогда p + q = n³.
Отсюда .
Среди трех последовательных целых чисел одно делится на 3, поэтому q делится на 3. Среди простых чисел только 3 делится на 3. Значит, q = 3. Это значение q получается при n = 2.
Задача 2.
Приведенный квадратный трехчлен f(x) имеет 2 различных корня.
Может ли так оказаться, что уравнение f(f(x)) = 0 имеет 3 различных корня, а уравнение f(f(f(x))) = 0 — 7 различных корней?
Решение:
Ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t 1 )²(x – t 2 )(x – t 3 ).
Заметим, что t 1 , t 2 , t 3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t 1 .
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t 1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Задача 3.
Пусть AD — биссектриса треугольника ABC, и прямая l касается окружностей, описанных около треугольников ADB и ADC в точках M и N соответственно.
Докажите, что окружность, проходящая через середины отрезков BD, DC и MN, касается прямой l.
Решение:
Решение 1.
Обозначим центры окружностей, описанных около треугольников ADB и ADC через O 1 и O 2 , а середины отрезков BD, DC, MN, DO 2 и O 1 O 2 — через A 1 , A 2 , K, E и O соответственно (см. рис.). Пусть ∠ BAD = ∠ CAD = α . Тогда ∠ A 1 O 1 D = ∠ A 2 O 2 D = α (так как половина центрального угла равна вписанному, опирающемуся на ту же дугу). Отрезок OK — средняя линия трапеции (или прямоугольника) O 1 MNO 2 , следовательно, OK ⊥ l, и . Заметим, что точки E, O и A 2 лежат на одной прямой, так как ∠ OEO 2 + ∠ O 2 EA 2 = ∠ O 1 DO 2 + ∠ O 2 EA 2 = ∠ O 1 AO 2 + (180° – ∠ DO 2 C) = 2 α + (180° – 2 α ) = 180°, т.е. OK = OE + EA 2 = OA 2 . Аналогично доказывается, что OA 1 = OK. Значит, точки A 1 , A 2 и K лежат на окружности с центром O, а так как OK ⊥ l, то эта окружность касается прямой l.
Случай, когда вместо прямой l рассматривает-ся прямая l 1 , разбирается аналогично.
Решение 2.
Пусть радиусы окружностей, описанных около треугольников ADB и ADC равны R 1 и R 2 . Если эти радиусы различны, то прямая l пересекает линию центров O 1 O 2 в точке O (см. рис.). Пусть OD пересекает окружности в точках B′ и C′, и OA пересекает ω в точке A′. При гомотетии H с центром O и коэффициентом точки C′, D и A переходят в точки D, B′ и A′ соответственно, следовательно, ∠ DAC′ = ∠ B′A′D. С другой стороны, ∠ B′A′D = ∠ B′AD, поэтому ∠ B′AD = ∠ C′AD. А это означает, что точки B′ и C′ совпадают с точками B и C, так как в противном случае один из углов BAD и CAD был бы меньше α , а другой — больше α ( α = ∠ B′AD = ∠ C′AD).
Рассмотрим гомотетию H 1 с центром O, переводящую ω 2 в окружность ω , проходящую через точку E — середину отрезка MN. Из того, что l проходит через точку O и ω 2 касается l, следует, что ω касается l в точке E. Кроме того, из гомотетичности треугольников ONC и OMD (гомотетия H) следует, что NC || MD. Кроме того, H 1 (C) = C 1 , где EC 1 || NC. Поэтому EC 1 — средняя линия трапеции CNMD, т.е. гомотетия H 1 переводит точку C в середину DC. Аналогично, она переводит D в середину отрезка BD. Значит, ω проходит через середины отрезков BD и DC.
Если же R 1 = R 2 , то вместо гомотетии следует рассмотреть параллельный перенос на вектор .
Решение 3.
Пусть R 1 ≠ R 2 . Проведем перпендикуляр SO к плоскости π , содержащей окружности ω 1 и ω 2 (см. обозначения в предыдущем решении). Нетрудно понять, что пересечение (наклонного) конуса с вершиной S и основанием ω 1 и прямого кругового цилиндра с основанием ω 2 является окружность, равная ω 2 и лежащая в плоскости π 1 || π . Глядя на рис., заключаем, что ортогональной проекцией на плоскость π пересечения конуса и плоскости, равноудаленной от π и π 1 является окружность, проходящая через середины отрезков BD, DC и MN и касающаяся прямой MN.
В случае R 1 = R 2 вместо конуса следует рассмотреть (наклонный) цилиндр с основанием ω 1 .
Задача 4.
Дана последовательность x k такая, что x 1 = 1, x n + 1 = n sin x n + 1.
Докажите, что последовательность непериодична.
Решение:
Предположим, что она периодична и длина периода равна T, тогда x m + T = x m и x m + T + 1 = x m + 1 при m ≥ m 0 .
Если при некотором m ≥ m 0 sin x m ≠ 0, то x m + T + 1 = (m + T) sin x m + T + 1 = (m + T) sin x m + 1 ≠ m sin x m + 1 = x m + 1 .
А если sin x m = 0, то x m + 1 = 1, и sin x m + 1 = sin 1 ≠ 0, так что предыдущее рассуждение применимо к x m + 1 .
Таким образом получаем противоречие.
Задача 5.
Докажите, что если у тетраэдра два отрезка, идущие из вершин некоторого ребра, в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из вершин скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.
Решение:
Пусть A 1 — центр вписанной окружности ∆ SBC, B 1 — центр вписанной окружности ∆ SAC, AA 1 пересекается с A, A 1 , B 1 , B лежат в одной плоскости, значит прямые AB 1 и BA 1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC BS = BC AS, отсюда , следовательно биссектрисы углов S в ∆ ASB и C в ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей ∆ ASB и ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.
Задача 6.
На плоскости дано бесконечное множество точек S, при этом в любом квадрате 1 × 1 лежит конечное число точек из множества S. Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняется: |XA|,;|XB| ≥ 0,999|AB|.
Решение:
Докажем утверждение задачи от противного.
Можно предположить, что для любых двух разных точек A и B из S найдется отличная от них точка X из S такая, что либо XA 1 длины l и будем брать отрезки I 2 , I 3 , …так, что I k + 1 пересекается с I k и |I k + 1 | k |.
Все эти отрезки имеют концы в S. Ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца I k до любого конца I 1 не превосходит
Следовательно, в квадрате 2000l × 2000l с центром в любом из концов I 1 лежит бесконечное число точек S.
Но из условия следует конечность их числа в любом квадрате.
Полученное противоречие завершает доказательство.
Задача 7.
Докажите, что в любом множестве, состоящем из 117 попарно различных трехзначных чисел, можно выбрать 4 попарно непересекающихся подмножества, суммы чисел в которых равны.
Решение:
Лемма.
Из любых 61 различных трехзначных чисел можно выбрать две непересекающиеся пары чисел, суммы в которых равны.
Доказательство:
Из 61 числа можно образовать пар чисел, сумма чисел в каждой паре лежит между 200 и 2000, следовательно, у каких-то двух пар суммы совпадают.
Пары, для которых совпадают суммы, очевидно, не могут пересекаться, ибо если x + y = x + z, то y = z и пары совпадают.
Лемма доказана.
Выберем пару пар чисел с равными суммами 15 раз (каждый раз будем исключать из рассматриваемого набора 4 взятых числа, перед последующим выбором чисел останется как раз 61 число).
Если не все 15 сумм были различны, то мы нашли 4 искомых множества — это 4 пары чисел, у которых совпадают суммы.
Если все 15 сумм различны, то составим два множества пар N 1 и N 2 таким образом: из двух пар с равными суммами первую включим в N 1 , вторую — в N 2 . Рассмотрим первое множество пар. У него есть 2 15 подмножеств.
Сумма всех чисел во всех парах любого подмножества не превосходит 30,000 тысяч (чисел не больше 30, каждое меньше тысячи).
Но 2 15 > 30,000, следовательно, есть два подмножества, для которых суммы чисел, входящих во все их пары совпадают.
Выбросив из этих подмножеств их пересечение, получим непересекающиеся подмножества M 1 и M 2 с тем же условием.
Теперь в N 2 возьмем подмножества пар, соответствовавших парам из множеств M 1 и M 2 — M 3 и M 4 .
Множества чисел, входящих в пары M 1 , M 2 , M 3 , M 4 — искомые.
Комментарий: Из аналогичных соображений выбирая не только пары, но также тройки и четверки, можно показать, что четыре непересекающиеся подмножества с равными суммами можно выбрать среди любых 97 трехзначных чисел.
Олимпиадные задания по математике 11 класс Варианты заданий с решением: 1 вариант | 2 вариант | 3 вариант
Олимпиадные задания по математике для учащихся 1-11 классов с решением и ответами:
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
10 нерешенных математических задач, с которыми академики бьются и по сей день
Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать
Гипотеза Коллатца
Небольшой прогресс в решении этой задачи почти вековой давности наметился буквально в прошлом месяце. Однако знаменитый американской математик Терренс Тао лишь ближе всех подошел к нему, но ответа все равно пока не нашел. Гипотеза Коллатца является фундаментом такой математической дисциплины, как «Динамические системы», которая, в свою очередь, важна для множества других прикладных наук, например, химии и биологии. Сиракузская проблема выглядит, как простой безобидный вопрос, но именно это делает ее особенной. Несмотря на все попытки, эта проблема до сих пор остается самой известной нерешенной математической задачей.
Видео:Показательные уравнения. 11 класс.Скачать
Проблема Гольдбаха (бинарная)
Проблема была сформулирована Кристианом Гольдбахом в его переписке с другим величайшим светилом математики Леонардом Эйлером в 1742 году. Сам Кристиан ставил вопрос несколько проще: «каждое нечетное число, больше 5, можно представить в виде суммы трех простых чисел». В 2013 году перуанский математик Харальд Хельфготт нашел окончательное решение этого варианта. Однако предложенное Эйлером следствие этого утверждения, которое и назвали «бинарной проблемой Гольдбаха», до сих пор не поддается никому. Это одна из самых древних нерешенных математических задач человечества.
Видео:Сложные показательные уравнения: примеры и способы решенияСкачать
Гипотеза о числах-близнецах
Как и всегда в математике, если проблема не решается «в лоб», к ней подходят с другого конца. Например, в 2013 году было доказано, что количество простых чисел, отличающихся на 70 миллионов, бесконечно. Тогда же, с разницей менее чем в месяц, значение разницы было улучшено до 59 470 640, а затем и вовсе на порядок — до 4 982 086. На данный момент существуют теоретические обоснования бесконечности пар простых чисел с разницей в 12 и 6, однако доказанной является лишь разность в 246. Как и прочие проблемы такого рода, гипотеза о числах-близнецах особенно важна для криптографии. Однако, до сих пор она остается нерешенной математической проблемой, над которой бьются лучшие умы.
Видео:Самая сложная задача из самой сложной олимпиады [3Blue1Brown]Скачать
Гипотеза Римана
Одна из «проблем тысячелетия», за решение которой назначен приз в миллион долларов, а также вхождение в пантеон «богов» современной математики. На деле, доказательство этой гипотезы настолько сильно толкнет вперед теорию чисел, что это событие по праву будет называться историческим. Многие вычисления и утверждения в математике строятся на предположении о том, что «гипотеза Римана» верна, и до сих пор никого не подводили. Немецкий математик сформулировал знаменитую задачу 160 лет назад, и с тех пор к ее решению подступались неисчислимое количество раз, однако до сих пор она остается, пожалуй, самой неприступной нерешенной задачей современной математики.
Видео:ВСЯ ХИМИЯ 10 КЛАСС ОВР в нейтральной среде / Метод полуреакций WannaBeTeacher Усенов УланСкачать
Гипотеза Берча и Суиннертон-Дайера
Эллиптическими кривыми называются такие линии на графике, которые описываются, на первый взгляд, безобидными уравнениями вида y²=x³+ax+b. Некоторые их свойства чрезвычайно важны для алгебры и теории чисел, а решение данной задачи может серьезно продвинуть науку вперед. Наибольший прогресс в нахождении ответа на эту нерешенную математическую задачу был достигнут в 1977 году коллективом математиков из Англии и США, которые смогли найти доказательство гипотезы Берча и Суиннертон-Дайера для одного из частных случаев.
Видео:Урок 10. Сложные уравнения и неравенства. Решение уравнений высоких степеней. Вебинар | МатематикаСкачать
Проблема плотной упаковки равных сфер
Под размерностью или измерением понимается количество линий, вдоль которых размещаются шары. В реальной жизни больше третьей размерности не встречается, однако математика оперирует и гипотетическими значениями. Решение этой задачи может серьезно продвинуть не только теорию чисел и геометрию вперед, но также поможет в химии, информатике и физике. Пожалуй, это одна из немногих нерешенных математических задач, которая имеет четкое практическое применение.
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Проблема развязывания
Первые шаги на пути решения этой задачи были сделаны в 2011 году американским математиком Грегом Купербергом. В его работе развязывание узла из 139 вершин было сокращено со 108 часов до 10 минут. Результат впечатляющий, но это лишь частный случай. На данный момент существует несколько десятков алгоритмов разной степени эффективности, однако ни один из них не является универсальным. Среди применений этой области математики — биология, в частности, процессы сворачивания белков.
Видео:✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Самый большой кардинал
Мощность множества характеризуется его кардинальным числом или просто кардиналом. Существует целая онлайн-энциклопедия бесконечностей и примечательных «конечностей», названная в честь Георга Кантора. Этот немецкий математик первым обнаружил, что неисчислимые множества могут быть больше или меньше друг друга. Более того, он смог доказать разницу в мощностях различных бесконечностей. Проблема тут заключается в доказательстве того, что существует кардинал (или, возможно, кардиналы) с некоторым заданным большим кардинальным свойством. До сих пор эта задача остается нерешенной.
Видео:Супер жесть! Уравнение с олимпиадыСкачать
Что не так с суммой числа π и e?
Если от предыдущего абзаца у читателя не заболела голова, то вот продолжение загадки — а что с πe, π/e и π-e? Также неизвестно, а знать это наверняка довольно важно для теории чисел. Трансцедентность числа доказал в конце XIX века Фердинанд фон Линдеман вместе с невозможностью решения задачи квадратуры круга. С тех пор значимых подвижек в решении вопроса не было.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Является ли γ рациональной?
Значение γ было вычислено до нескольких тысяч знаков после запятой, первые четыре из которых — 0,5772. Она достаточно широко используется в математике, в том числе вместе с другим числом Эйлера — e. Согласно теории цепных дробей, если постоянная Эйлера-Маскерони является рациональной дробью, то ее знаменатель должен быть больше 10 в 242 080 степени. Но пока доказать ее рациональность не удалось — для этого нам и нашим компьютерам нужно больше времени. До этих пор рациональность постоянной γ остается нерешенной математической проблемой.
Кстати, мы недавно запустили ютуб-канал! В новом видео рассказали о главных достижениях женщин-ученых, о которых все почему-то забыли:
Видео:11 класс, 12 урок, Показательные уравненияСкачать
Математика
52. Более сложные примеры уравнений.
Пример 1 .
5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)
Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:
или, после сокращения,
5(x + 1) – 3(x – 1) = 15
5x + 5 – 3x + 3 = 15
Рассмотрим еще уравнение:
5/(x-1) – 3/(x+1) = 4(x 2 – 1)
Решая, как выше, получим:
5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.
Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.
Для первого примера получим:
Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.
Для второго примера получим:
5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0
Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.
Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.
(x + 3)/(x – 1) = (2x + 3)/(2x – 2)
Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:
(x + 3) (2x – 2) = (2x + 3) (x – 1)
2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.
Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 — от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:
6x – 2x – 6 = 3x – 2x – 3
Перенесем неизвестные члены влево, известные вправо — получим:
Вспоминая данное уравнение
(x + 3)/(x – 1) = (2x + 3)/(2x – 2)
мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.
Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) — ведь 2x – 2 = 2 (x – 1), то получим:
2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,
Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:
(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)
Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:
Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:
или 11 = 11
Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:
(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.
Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы
Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:
1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2
Если мы вспомним начальное уравнение
(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),
то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.
Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:
1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),
2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),
3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).
Общий знаменатель равен (x – 3)(x – 2)(x + 1).
Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:
на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:
3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.
Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.
Если бы мы взяли уравнение:
то, поступая совершенно так же, как выше, получили бы
3(x + 1) – 2(x – 3) = x – 2
3x + 3 – 2x + 6 = x – 2
3x – 2x – x = –3 – 6 – 2,
откуда получили бы
что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.
📸 Видео
Как решать неравенства? 9 - 11 класс. Вебинар | Математика TutorOnlineСкачать
Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как стать лучше в математикеСкачать