Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме: «Системы уравнений»
методическая разработка по алгебре (7 класс)

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Цель работы: проверить умения учащихся решать системы уравнений методом подстановки и методом алгебраического сложения.

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Скачать:

ВложениеРазмер
sistemy_uravneniy_samostoyatelnaya_rabota.doc33 КБ

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Предварительный просмотр:

Самостоятельная работа по теме:

«Системы линейных уравнений с двумя переменными»

1. Решите системы уравнений:

— методом подстановки (а, б)

— методом алгебраического сложения (в,г,д)

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме:

«Системы линейных уравнений с двумя переменными»

1. Решите системы уравнений:

— методом подстановки (а, б, г)

— методом алгебраического сложения (в, д)

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

По теме: методические разработки, презентации и конспекты

Самостоятельная работа на тему :»Системы счисления»

Самостоятельная (проверочная) работа для 6 класса на тему :»Системы счислениия».

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме «Системы счисления»

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме: «Системы счисления»

Самостоятельная работа13 вариантов с ответами.

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Раздаточный материал для проведения итоговой самостоятельной работы по теме «Системы счисления. Арифметические операции в позиционных системах счисления»

В самостоятельной работе подобраны разносторонние задания для выявления уровня усвоения материала обучающимися. В помощь учителю даны ответы для проверки работ.

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме СИСТЕМЫ СЧИСЛЕНИЯ

Самостоятельная работа по теме СИСТЕМЫ СЧИСЛЕНИЯ.

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме «Системы счисления», 10 класс

Данная работа может быть использована как проверочная по теме «Системы счисления», 10 класс.

Самостоятельная работа по алгебре решение систем линейных уравнений методом сложения

Самостоятельная работа по теме: «Системы уравнений с несколькими неизвестными»

Самостоятельная работа составлена в двух вариантах.

Видео:Решение систем линейных уравнений МЕТОДОМ СЛОЖЕНИЯ. §28 Алгебра 7 классСкачать

Решение систем линейных уравнений МЕТОДОМ СЛОЖЕНИЯ. §28 Алгебра 7 класс

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Немного теории.

Видео:Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравненийСкачать

Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравнений

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Самостоятельные работы Алгебра 7 Мерзляк

Самостоятельные работы Алгебра 7 Мерзляк — это цитаты самостоятельных работ из пособия для учащихся «Алгебра 7 класс. Дидактические материалы / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир — М.: Вентана-Граф» (Алгоритм успеха), которое используется в комплекте с учебником «Алгебра 7 класс» УМК Мерзляк.

Цитаты из пособия указаны в учебных целях. При постоянном использовании самостоятельных работ в 7 классе рекомендуем купить книгу: Мерзляк, Рабинович, Полонский: Алгебра 7 класс. Дидактические материалы. ФГОС.

Самостоятельные работы по алгебре. 7 класс

Самостоятельная № 01 Введение в алгебру

Самостоятельная № 02 Линейное уравнение с одной переменной

Самостоятельная № 03 Решение задач с помощью уравнений

Самостоятельная № 04 Тождественно равные выражения. Тождества

Самостоятельная № 05 Степень с натуральным показателем

Готовятся к публикации:

Свойства степени с натуральным показателем

Сложение и вычитание многочленов

Умножение одночлена на многочлен

Умножение многочленов на многочлен

Разложение многочленов на множители. Вынесение общего множителя за скобки

Разложение многочленов на множители. Метод группировки

Произведение разности и суммы двух выражений

Разность квадратов двух выражений

Квадрат суммы и квадрат разности двух выражений

Преобразование многочлена в квадрат суммы или разности двух выражений

Сумма и разность кубов двух выражений

Применение различных способов разложения многочлена на множители

Связи между величинами. Функция

Способы задания функции

Линейная функция, её график и свойства

Уравнения с двумя переменными

Линейное уравнение с двумя переменными и его график

Системы уравнений с двумя переменными. Графический метод решения системы двух линейных уравнений с двумя переменными

Решение систем линейных уравнений методом подстановки

Решение систем линейных уравнений методом сложения

Решение задач с помощью систем линейных уравнений

Вы смотрели «Самостоятельные работы Алгебра 7 Мерзляк». Цитаты самостоятельных работ из пособия для учащихся «Алгебра 7 класс. Дидактические материалы / А.Г. Мерзляк и др.» (Алгоритм успеха).

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать

7 класс, 39 урок, Метод алгебраического сложения

Предметы

Видео:Решение систем уравнений методом сложения. Алгебра 9 класс.Скачать

Решение систем уравнений методом сложения. Алгебра 9 класс.

Новые работы

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Найти контрольную:

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Авторы работ и УМК

Видео:Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Предметы

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Важные страницы

Соглашение о конфиденциальности

(с) 2020-2022. Дистанционный информационный Центр НПИ (г.Москва). Бесплатная помощь школьникам, находящимся на домашнем или семейном обучении. Цитаты из учебных пособий размещены в учебных целях. Контакты: kip1979@mail.ru

Видео:Алгебра 9 класс. Решение систем уравнения методом сложенияСкачать

Алгебра 9 класс. Решение систем уравнения методом сложения

Популярное

Видео:Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.Скачать

Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.

Предупреждение

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

🎦 Видео

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решение систем уравнений. Способ сложения.Скачать

Решение систем уравнений. Способ сложения.

Решение систем линейных уравнений способом сложенияСкачать

Решение систем линейных уравнений способом сложения
Поделиться или сохранить к себе: