Самое трудное уравнение для 6 класса

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Видео:Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(Самое трудное уравнение для 6 класса; 9(Самое трудное уравнение для 6 класса; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —Самое трудное уравнение для 6 классаa; Самое трудное уравнение для 6 классаm-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (aСамое трудное уравнение для 6 класса0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

Самое трудное уравнение для 6 классах+3=Самое трудное уравнение для 6 классах+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(Самое трудное уравнение для 6 классах+3)∙9=(Самое трудное уравнение для 6 классах+5)∙9 Далее − по плану.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Самое трудное уравнение для 6 класса

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

Самое трудное уравнение для 6 класса

  1. Обыкновенные.
  2. С параметром.
  3. Высшей степени.

Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

Обыкновенные тождества

Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

Самое трудное уравнение для 6 класса

  1. Раскрыть скобки.
  2. Произвести математические преобразования над компонентами уравнения.
  3. Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  4. Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  5. Выполнить проверку, подставив решение в исходное равенство.

Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  1. 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  2. 7t 2 −7t 2 +7t-7=7t-7=8.
  3. 7t=15.
  4. t=2,5.
  5. 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

Выражения с параметром

Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

Самое трудное уравнение для 6 класса

  1. Записать равенство.
  2. Раскрыть скобки и привести подобные элементы к общему виду.
  3. Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  4. Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  5. Записать формулу определения корня.
  6. При необходимости подставить значение параметра.
  7. Проверить результат.

Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  1. t-2+pt=0.
  2. Опускается, поскольку в выражении нет скобок.
  3. (t+pt)=t (1+p)=2.
  4. p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  5. t=2/(1+p).
  6. При p=0: t=2.
  7. 2−2+0*2=0.

Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)

. Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

Понижение степени

Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

Самое трудное уравнение для 6 класса

Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  1. Написать равенство с неизвестным.
  2. Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  3. Решить линейные уравнения.
  4. Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  1. 3t^2-3=0.
  2. 3(t^2-1)=0.
  3. Сократить обе части на 3: t^2-1=0.
  4. Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  5. У уравнения два корня: t1=1 и t2=-1.
  6. Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

Системы линейного типа

Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

Самое трудное уравнение для 6 класса

  1. Записать систему уравнений.
  2. Выбрать наиболее простое тождество и выразить одну величину через другую.
  3. Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  4. Раскрыть скобки и выполнить математические преобразования.
  5. Решить уравнение в четвертом пункте.
  6. Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  7. Найти вторую переменную.
  8. Записать результат.
  9. Выполнить проверку.

Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  1. 5t-2s=1 и 4t^2-s^2=0.
  2. Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  3. (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  4. 8t=8=>t=1.
  5. 5*1-2s=1. Отсюда s=2.
  6. 5*1-2*2=1=1 (равенство действительное).

В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

Самое трудное уравнение для 6 класса

  1. Упростить все выражения, входящие в систему.
  2. Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  3. Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  4. Начертить прямоугольную систему координат.
  5. Отметить точки, исходя из таблицы, в системе координат.
  6. Соединить точки плавными линиями при помощи карандаша.
  7. Проделать аналогичные действия над другими тождествами (5 и 6).
  8. Определить точки пересечения функций и записать их координаты.

В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Решение уравнений с дробями

Самое трудное уравнение для 6 класса

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Решить уравнение - Математика - 6 классСкачать

Решить уравнение - Математика - 6 класс

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать

Решение задач с помощью уравнений. Видеоурок 29. Математика 6 класс

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Самое трудное уравнение для 6 класса Самое трудное уравнение для 6 класса

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Самое трудное уравнение для 6 класса Самое трудное уравнение для 6 класса

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:6 класс, 42 урок, Решение уравненийСкачать

6 класс, 42 урок, Решение уравнений

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Самое трудное уравнение для 6 класса

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Самое трудное уравнение для 6 класса

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Самое трудное уравнение для 6 класса

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Самое трудное уравнение для 6 класса

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Самое трудное уравнение для 6 класса

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияСамое трудное уравнение для 6 класса

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Самое трудное уравнение для 6 класса

Переведем новый множитель в числитель..

Самое трудное уравнение для 6 класса

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Самое трудное уравнение для 6 класса

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • 🎥 Видео

    Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

    Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

    Решение уравнений. Видеоурок 28. Математика 6 классСкачать

    Решение уравнений. Видеоурок 28. Математика 6 класс

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать

    Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравнения

    Решение уравнений с дробными числами в 6 классеСкачать

    Решение уравнений с дробными числами в 6 классе

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

    Линейное уравнение с одной переменной. Практическая часть. 6 класс.

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать

    РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 класс

    Как решить сложные уравненияСкачать

    Как решить сложные уравнения

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

    6 класс. Решение уравнений с модулями.Скачать

    6 класс. Решение уравнений с модулями.
    Поделиться или сохранить к себе: