Разделы: Математика
Класс: 6
Цели урока:
- повторить правила раскрытия скобок и приведения подобных слагаемых;
- ввести определение линейного уравнения с одним неизвестным;
- познакомить учащихся со свойствами равенств;
- научить решать линейные уравнения;
- научить решать задачи на «было − стало».
Оборудование: компьютер, проектор.
- Ход урока
- I. Проверка предыдущего домашнего задания.
- II. Повторение теоретического материала.
- III. Устные задания по слайдам.
- IV. Новая тема. Решение линейных уравнений.
- Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса
- Общие сведения
- Классификация уравнений
- Обыкновенные тождества
- Выражения с параметром
- Понижение степени
- Системы линейного типа
- Решение уравнений с дробями
- Понятие дроби
- Основные свойства дробей
- Понятие уравнения
- Понятие дробного уравнения
- Как решать уравнения с дробями
- 1. Метод пропорции
- 2. Метод избавления от дробей
- Что еще важно учитывать при решении
- Универсальный алгоритм решения
- Примеры решения дробных уравнений
- 💥 Видео
Видео:Сложные уравнения. Как решить сложное уравнение?Скачать
Ход урока
I. Проверка предыдущего домашнего задания.
II. Повторение теоретического материала.
- Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
- Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
- Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
- Как найти неизвестный множитель? [Произведение разделить на известный множитель]
- Как найти неизвестное делимое? [Делитель умножить на частное]
- Как найти неизвестный делитель? [Делимое разделить на частное]
- Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
- Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
- Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]
III. Устные задания по слайдам.
(слайд 2, слайд 3).
1) Раскройте скобки:
3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).
2) Приведите подобные слагаемые:
6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.
3) Упростите выражение:
IV. Новая тема. Решение линейных уравнений.
До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.
Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.
Линейные уравнения обладают свойствами:
- Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
- Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).
Рассмотрим план решения линейного уравнения:
х-1+(х+2)=-4(-5-х)-5 х-1+х+2=20+4х-5 х+х-4х=20-5+1-2 -2х=14 х=14:(-2) х=-7 Ответ: -7. | 1) раскрыть скобки, если они есть; 2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую; 3) привести подобные слагаемые; 4) найти неизвестный множитель. |
Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)
Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.
х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.
(х+3)∙9=(х+5)∙9 Далее − по плану.
Видео:Решение уравнений, 6 классСкачать
Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса
Видео:Решение уравнений - математика 6 классСкачать
Общие сведения
Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.
Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.
В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Классификация уравнений
Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:
- Обыкновенные.
- С параметром.
- Высшей степени.
Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.
Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.
Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.
Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.
Обыкновенные тождества
Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:
- Раскрыть скобки.
- Произвести математические преобразования над компонентами уравнения.
- Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
- Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
- Выполнить проверку, подставив решение в исходное равенство.
Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:
- 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
- 7t 2 −7t 2 +7t-7=7t-7=8.
- 7t=15.
- t=2,5.
- 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.
Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.
Выражения с параметром
Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:
- Записать равенство.
- Раскрыть скобки и привести подобные элементы к общему виду.
- Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
- Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
- Записать формулу определения корня.
- При необходимости подставить значение параметра.
- Проверить результат.
Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:
- t-2+pt=0.
- Опускается, поскольку в выражении нет скобок.
- (t+pt)=t (1+p)=2.
- p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
- t=2/(1+p).
- При p=0: t=2.
- 2−2+0*2=0.
Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p)
. Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.
Понижение степени
Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.
Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:
Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:
- Написать равенство с неизвестным.
- Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
- Решить линейные уравнения.
- Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.
Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:
- 3t^2-3=0.
- 3(t^2-1)=0.
- Сократить обе части на 3: t^2-1=0.
- Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
- У уравнения два корня: t1=1 и t2=-1.
- Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.
Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.
Системы линейного типа
Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:
- Записать систему уравнений.
- Выбрать наиболее простое тождество и выразить одну величину через другую.
- Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
- Раскрыть скобки и выполнить математические преобразования.
- Решить уравнение в четвертом пункте.
- Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
- Найти вторую переменную.
- Записать результат.
- Выполнить проверку.
Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:
- 5t-2s=1 и 4t^2-s^2=0.
- Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
- (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
- 8t=8=>t=1.
- 5*1-2s=1. Отсюда s=2.
- 5*1-2*2=1=1 (равенство действительное).
В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.
Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:
- Упростить все выражения, входящие в систему.
- Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
- Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
- Начертить прямоугольную систему координат.
- Отметить точки, исходя из таблицы, в системе координат.
- Соединить точки плавными линиями при помощи карандаша.
- Проделать аналогичные действия над другими тождествами (5 и 6).
- Определить точки пересечения функций и записать их координаты.
В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.
Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.
Видео:Решить уравнение - Математика - 6 классСкачать
Решение уравнений с дробями
О чем эта статья:
5 класс, 6 класс, 7 класс
Видео:Раскрытие скобок. 6 класс.Скачать
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:
Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:
На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Видео:6 класс, 42 урок, Решение уравненийСкачать
Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
- Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
💥 Видео
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Решить уравнение с дробями - Математика - 6 классСкачать
Как решить сложные уравненияСкачать
Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
РЕШЕНИЕ УРАВНЕНИЙ 6 класс математика 5 классСкачать
Решение уравнений с дробными числами в 6 классеСкачать
Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
6 класс. Решение уравнений с модулями.Скачать