Рисунки с помощью графиков уравнений

Интегрированный урок (алгебра + информатика) по теме «Рисуем графиками функций». 8-й класс

Класс: 8

Тема (математика): Преобразования графиков функций.

Тема (информатика): Построение графиков в MS Excel.

Цели урока:

  • Образовательные:
    • повторение знаний по преобразованию графиков функций,
    • применение приобретенных умений и навыков графического изображения в процессе решения задач по математике и информатике;
    • формирование практических навыков построения графиков в программе Excel.
  • Развивающие:
    • развитие умений выделять главное,
    • развитие речи, эмоций, логического мышления учащихся,
    • активизация познавательной и творческой активности учащихся.
  • Воспитательные:
    • формирование интереса к предмету, навыков контроля и самоконтроля, чувства ответственности, самостоятельности, деловых и коммуникативных качеств учащихся.

Задачи урока:

  • Повторить виды преобразований графика функции y = f(x):
    • y = – f(x) ;
    • y = kf(x);
    • y = f(x) + а;
    • y = f(xb);
    • y = f(xb) + а.
  • Использовать изученные виды преобразований для построения рисунка с помощью графиков.
  • Использовать умения построения графиков в одной системе координат с помощью программы Excel для получения некоторого изображения.
  • Продолжить формирование у учащихся потребности использования информационных технологий в решении графических заданий по математике.
  • Продемонстрировать применение полученных знаний на практике и для решения задач из смежных дисциплин.

Структура урока:

  1. Организационный момент (объявление темы, цели и задач урока).
  2. Актуализация знаний (повторение видов преобразований графиков функций)
  3. Повторение темы «Преобразования графиков функций»:
    • выполнение задания на построение графиков функций с помощью различных видов преобразований;
    • построение рисунка в тетради с помощью графиков функций на заданной области определения.
  4. Повторение темы «Построение графиков функций с помощью программы Excel:
    • повторение особенностей ввода формул и построения графиков в программе Excel.
    • практическая работа «Рисуем графиками функций в программе Excel».
    • проверка практической работы, анализ ошибок и выставление оценок.
  5. Постановка домашнего задания.
  6. Подведение итогов урока, рефлексия.

1. Организационный момент

Сегодня мы проводим интегрированный урок, в ходе которого попробуем совместить два предмета: математику и информатику. Нам предстоит повторить преобразования графиков функций и использовать эти знания для выполнения заданий по математике и информатике на построение различных изображений.

2. Актуализация знаний

Для повторения изученных видов преобразований графиков необходимо выполнить предложенное задание.

Задание для фронтальной работы: установите соответствие между предложенными графиками и формулами функций, дайте характеристику данному виду преобразований (рис.1, 2).

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

3. Повторение темы «Преобразования графиков функций»

Применение рассмотренных видов преобразований осуществляется при выполнении двух следующих заданий, которые учащиеся выполняют в тетрадях. Один ученик выполняет задание на интерактивной (либо обычной) доске. Графики обозначаются разными цветами.

Задание 1: постройте графики функций с помощью изученных видов преобразований

Рисунки с помощью графиков уравнений

Первый график должен быть построен обязательно на доске, второй рассчитан на учеников, быстро выполнивших задание, либо может быть использован как резервный в конце урока для самостоятельной работы учащихся, быстро справившихся с практической работой.

Задание 2: Постройте рисунок с помощью графиков функций (рис.3):

Рисунки с помощью графиков уравнений

Графики 4),5),6),7) до пересечения с графиком Рисунки с помощью графиков уравнений
А теперь попробуем получить рисунки в программе Excel.

4. Повторение темы «Построение графиков функций с помощью программы Excel:

Для повторения темы на данном этапе урока необходимо провести фронтальный опрос учащихся с целью актуализации знаний по информатике, необходимых для выполнения практической работы.

Вопросы для устной фронтальной работы:

  • Как задать диапазон значений для переменной Х?
  • Как задать диапазон значений для переменной У?
  • Как показать, что в ячейку будет введена формула?
  • Какие правила ввода формул вы знаете?
  • Какими символами обозначаются действия умножения, деления, возведения в степень?
  • Может ли формула в программе Excel содержать переменную Х? А что вместо Х она должна содержать?
  • Как построить несколько графиков в одной системе координат?
  • Какой тип диаграмм надо выбрать для построения графика функции?
  • Как изменить цвет графика?

Практическая работа «Рисуем графиками функций в программе Excel».

Все ученики получают карточки с заданиями. Задания (зонтик, очки, кит) берутся из источника [6]. В одной системе координат необходимо построить графики всех функций на указанных промежутках. Если все будет выполнено верно, то получится картинка. За работу каждому будет выставлена отметка с учетом объема выполненной работы и допущенных ошибок. Работу сохранить на Рабочий стол и не закрывать.

Рисунки с помощью графиков уравнений

На данном этапе учащиеся осуществляют самоконтроль:

  • определяют, какие элементы рисунка «не вписываются» в общую картину,
  • чем это было вызвано (ошибки при вводе формулы, при задании диапазона значений и т.п.), опираясь на полученные на уроках математики знания о различных видах преобразований, вносят изменения и оценивают, как они повлияют на вид рисунка. Во время работы учитель проходит по классу и оценивает работу учащихся.

На следующем этапе учитель показывает с помощью проектора, какие рисунки должны получиться у учащихся, объявляет оценки за выполненную работу, проводит с помощью учеников анализ типичных неточностей и ошибок.

5 . Постановка домашнего задания

По алгебре (творческое задание): придумать рисунок с помощью графиков 7-8 функций. Изобразить его в координатной плоскости, записать используемые функции на заданной области определения.
По информатике: построить с помощью программы Excel рисунок по заданным формулам функций из того же источника [6] (бабочка и лягушка).

Рисунки с помощью графиков уравнений

6. Подведение итогов урока, рефлексия

Подведение итогов урока осуществляется в форме беседы, в ходе которой обсуждается вопрос: в каких сферах человеческой деятельности могут применяться графики функций.
На этапе рефлексии ученикам предоставляется возможность оценить свою работу, а также ответить на вопросы: получилось ли достигнуть цели урока, достаточно ли было знаний для выполнения предложенных заданий, какие задания требуют дополнительного внимания.

Список использованной литературы

  1. Алгебра,8 класс: учеб. для учащихся общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, И.Е.Феоктистов.–10-е изд., испр. – М.: Мнемозина, 2010.–384с.
  2. Босова Л.Л. Информатика и ИКТ: учебник для 7 класса / Л.Л. Босова. – 2-е изд. – М.: БИНОМ. Лаборатория знаний, 2010. – 229 с.
  3. Цукарь А.Я. Рисуем графиками функций // Математика в школе. – 1999. – №4. – с. 80-81

Видео:Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Научно — практическая работа» Первые шаги в науку»: «Рисуем графиками линейных функций»

Рисунки с помощью графиков уравнений

Цель работы: научиться создавать простые рисунки и сюжеты с помощью графиков линейных функций с заданными ограничениями в сервисе DESMOS-графический калькулятор.

Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать

Математика без Ху!ни. Нахождение асимптот, построение графика функции.

Скачать:

ВложениеРазмер
67_nesmina_a.l_matematika.docx111.27 КБ

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Предварительный просмотр:

ХIV городская научно-практическая конференция школьников «Первые шаги в науку»

Возрастная категория: «Юниор»

«Рисуем графиками линейных функций»

Несмина Анастасия Леонидовна

г.о. Тольятти, МБУ «Лицей № 67», 7 класс

Столярчук Лилия Геннадьевна,

учитель математики первой категории, МБУ «Лицей № 67»

2.1. Элементарные функции и их графики………………5

2.2. Линейная функция и ее график………………………6

2.3. Рисование графиками линейных функций………….7

Каждый год счастливые родители ведут своих детей в школу. И далее дорога для большего числа учащихся составляет 11 лет упорного труда в получении знаний. Математика сопровождает нас на всем пути, но, к сожалению, не у всех ребят есть прирожденная склонность к ней. Возникает необходимость для поиска методов воздействия на учащихся, которые могли бы повысить стимул приобретения и расширения знаний. Как заставить ученика работать с удовольствием, а не из-под палки? Как сделать так, чтобы он захотел чему то научиться? Математика – одна из важнейших наук на земле и именно поэтому есть необходимость развивать у детей интерес к этой науке. А это означает, что задания в математике должны быть такими, чтобы постоянно была пища для размышлений и, даже, для творческого полета.

Тема исследовательской работы : « Рисуем графиками линейных функций ».

Гипотеза : « графиками линейных функций можно рисовать отдельные объекты и даже целые сюжеты».

Цель : научиться создавать простые рисунки и сюжеты с помощью графиков линейных функций с заданными ограничениями в сервисе DESMOS-графический калькулятор.

Объект исследования : линейная функция и ее график.

Предмет исследования : рисование графиками линейной функции.

1. Изучить разнообразную литературу по теме: «Линейная функция и ее график»

2. Создать авторские рисунки графиками линейных функций в сервисе DESMOS-графический калькулятор;

3. Предложить одноклассникам построить рисунки по заданным функциям с ограничениями;

4. Предложить одноклассникам создать авторские рисунки графиками линейных функций в сервисе DESMOS-графический калькулятор;

6. Выполнить оценку результатов своей работы и сделать выводы.

  • поиск, анализ и синтез литературы и программного обеспечения;
  • практическое применение знаний, умений и навыков;
  • обобщение;

Понятие «функция» одно из важнейших в математике. С помощью функции описываются различные процессы и явления: химические, статистические, физические, природные и т.д.

Актуальность работы заключается в том, что при выполнении творческих заданий на создание изображений графиками линейных функций, развиваются художественные способности учащихся, которые лежат в основе различных профессий: дизайнер, архитектор, скульптор и т.д., кроме того, повышается интерес к изучению темы: «Линейная функция и ее график». Красота и эстетика математики в школе в особой мере проявляется именно в «красивых» и творческих заданиях.

Рисование графиками линейных функций заставляет воочию увидеть неразрывную связь красоты и математики, непосредственно соприкоснуться с миром прекрасного. Вместо однообразных упражнений по изучаемой теме можно предложить ребятам творческий подход и тогда математика становится интересной, удивительной и красивой.

Относительная «новизна» заданий, неожиданная фабула интригует, а положительные эмоции включают второе дыхание в получении знаний. Такие нестандартные упражнения послужат достаточно хорошей школой для приобретения необходимых основ мышления, владея которыми можно решать любые задачи. Кроме того, чтобы облегчить дальнейшее изучение специальных функций в школе, нужно научиться свободно оперировать графиками элементарных функций.

2. Основное содержание.

2.1 Элементарные функции и их графики

Знакомство и изучение свойств различных функций и их графиков занимает важное место и в школьной математике, и в следующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве предметов узкого профиля. Например в экономике – это функции издержек, полезности, функции спроса, предложения и потребления, в радиотехнике – функции управления и функции отклика, в статистике – функции распределения и т.д.

Определение: зависимость переменной у от переменной х, при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у, называется функцией. у = f(х), где х – независимая переменная (аргумент), у – зависимая переменная (функция).

Область определения функции D(f)- множество, на котором задаётся функция. Иначе: множество значений, которые может принимать аргумент.

Область значений функции E(f)- множество, состоящее из всех значений, которые принимает функция.

График функции – множество точек на координатной плоскости, координатами которых являются пары чисел (х; у), где х – значение аргумента, у – соответствующее ему значение функции.

1. Линейная функция y = kx + m

График функции – прямая.

2. Функция y = kx² (k ≠ 0)

График функции – парабола.

3. Квадратичная функция y = ax² + bx + c

График функции – парабола

4. Функция обратной пропорциональности y =

График функции – гипербола.

График функции – ветвь параболы, перевернутая «набок».

График функции – объединение двух лучей

3. y = xⁿ (n = 3, 5, 7, 9…)

График функции – кубическая парабола (при n=3)

2.2. Линейная функция и ее график.

Линейная функция y = kx + m, график функции – прямая.

Коэффициент k отвечает за угол наклона (k>0 – угол острый, k 0 – вверх, m

у = kx – частный случай линейной функции при m=0 (прямая пропорциональность)

В этом случае график функции обязательно проходит через начало координат.

Свойства линейной функции y = kx + m

2) Возрастает, если k > 0; убывает, если k

3) Не ограничена ни снизу, ни сверху

4) Нет ни наибольшего, ни наименьшего значений

Чтобы составить уравнение линейной функции надо:

  1. взять координаты двух точек, через которые проходит прямая ( x 1 ,y 1 ) ( x 2 ,y 2 );
  2. подставить эти координаты в уравнение линейной функции и получить систему двух уравнений:
  3. выразить из первого уравнения m = у 1 — k х 1 ;
  4. подставить во второе у 2 = k х 2 + у 1 — k х 1 ;
  5. найти значение k = ;
  6. подставить значение k в формулу m = у 1 — k х 1 .

Например, мы выяснили, что график линейной функции (прямая) проходит через точки с координатами (5;2) и (4:1). Действуем по плану: составим систему уравнений

Из первого уравнения выразим m : m=2-5k, подставим значение m во второе уравнение и найдем k : 1=4k+2-5k, k =1. Далее в уравнение линейной функции подставляем значения коэффициентов k и m и получаем искомое уравнение прямой: у=х-3 .

2.3. Рисование графиками линейных функций на уроке математики

Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Проектная работа по теме «Построение рисунков с помощью графиков функций» (9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Задания группам.docx

Построить рисунок «Зонтик» [5] по заданным уравнениям графиков функций:

у = (-1/18) х 2 +12, xϵ[ -12;12 ] ;

у = (-1/8) х 2 +6, xϵ[ -4;4 ] ;

у = (-1/8) (х+8) 2 , xϵ 12; -4 ] ;

у = (-1/8) (х-8) 2 , xϵ[ 4;12 ] ;

у = 2(х+3) 2 -9, xϵ [ -4; -0,3 ] ;

у = 1,5(х+3) 2 -10, xϵ [ -4; -0,2 ] .

Построить рисунок «Очки» [5] по заданным уравнениям графиков функций:

у = (-1/16) (х+5) 2 +2, xϵ [ -9; -1 ] ;

у = (-1/16) (х-5) 2 +2, xϵ[ 1;9 ] ;

у = (1/4) (х+5) 2 -3, xϵ [ -9; -1 ] ;

у = (1/4) (х-5) 2 -3, xϵ[ 1;9 ] ;

у = -(х+7) 2 +5, xϵ [ -9; -6 ] ;

у = — (х-7) 2 +5, xϵ [ 6; 9 ] ;

у = 0,5х 2 +1,5, xϵ [ -1; 1 ] .

Построить рисунок «Лягушка» [5] по заданным уравнениям графиков функций:

у = (-3/49) х 2 +8, xϵ[ -7;7 ] ;

у = (4/49) х 2 +1, xϵ[ -7;7 ] ;

у = -0,75 (х+4) 2 +11, xϵ [-6,8; -2];

у = -0,75 (х-4) 2 +11, xϵ [2;6,8];

у = -(х+4) 2 +9, xϵ [-5,8; -2,8];

у = — (х-4) 2 +9, xϵ [2,8;5,8];

у = (4/9) х 2 -5, xϵ [-4;4].

у = (4/9) х 2 -9, xϵ [-5,2;5,2];

у = (-1/16) (х+3) 2 -6, xϵ [-7; -2,8];

у = (-1/16) (х-3) 2 -6, xϵ [2,8;7];

у = (1/9) (х+4) 2 -11, xϵ [-7;0];

у = -(1/9) (х-4) 2 -11, xϵ [0;7];

у = -(х+5) 2 , xϵ [-4,5; -7];

у = — (х-5) 2 , xϵ [4,5;7];

у = (2/9) х 2 +2, xϵ [-3;3].

Построить рисунок «Динозаврик» [5] по заданным уравнениям графиков функций:

у = (-1/8) х 2 +5, xϵ[ -5,2;4 ] ;

у = (-5/16) (х-8) 2 +8, xϵ[ 4;12 ] ;

у = -0,5 (х+7) 2 +3, xϵ [ -9; -5 ] ;

у = -0,5 (х-10) 2 +1, xϵ[ 8;12 ] ;

у = (х+3) 2 -7, xϵ [ -5; -1 ] ;

у = (х-4) 2 -7, xϵ[ 2;6 ] ;

у = (4/9) (х-0,5) 2 -4, xϵ[ -1;2 ] ;

у = 0,5(х-11) 2 -7, xϵ [9;13].

Построить рисунок «Верблюд» [5] по заданным уравнениям графиков функций:

у = -0,5х 2 +4, xϵ[ -2;2 ] ;

у = -0,5(х+4) 2 +4, xϵ [ -6; -2 ] ;

у = 0,5 (х-3) 2 +1,5, xϵ[ 2;6 ] ;

у = -0,5 (х-8) 2 +8, xϵ[ 6;10,5 ] ;

у = (х-9,5) 2 +4, xϵ[ 8,5;10,5 ] ;

у = -0,5(х-8,5) 2 +5, xϵ[ 4;8,5 ] ;

у = (1/8) (х+3) 2 -5, xϵ[ -7;1 ] .

у =-0,25 (х+6) 2 +2, x ϵ [ -11; -6 ] ;

у = 3 (х+6), xϵ [ -8; -7 ] ;

Выбранный для просмотра документ Карта проекта. Группа 1. Построение рисунков с помощью графиков.docx

по теме «Построение рисунков с помощью графиков функций»

Цель работы: применение навыков построения графиков.

Оборудование: шаблоны графиков функций, линейка, карандаш, «Учебное электронное издание математика 5-11».

Построить рисунок «Птица» по заданным уравнениям графиков функций:

у = (-4/27) х 2 +6, xϵ[0 ;9 ] ;

у = (1/9) (х-7) 2 -4, xϵ[ -2;7 ] ;

у = -0,5(х+2) 2 +8, xϵ[ -4;0 ] ;

у = (-1/16) (х+2) 2 +5, xϵ[ -6;2 ] ;

Распределить обязанности в группе:

А) представление теоретического материала по теме «Функция»;

Б) изготовление шаблонов парабол (уравнения №1-№4);

В) Заполнение таблицы №1 для построения рисунка;

Г) Построение рисунка с помощью шаблонов и линейки;

Д) Построение рисунка с помощью пособия «Учебное электронное издание математика 5-11»;

Е) Представление результатов работы в группе.

2. Выполнение работы:

2.1. Актуализация теоретических знаний по теме «Функция».

2.2. Изготовление шаблонов парабол

2.3. Заполнение таблицы №1

Вид графика (парабола, прямая)

Шаблон у=ах 2 , а

Ветви направлены (вверх, вниз)

2.4. Построение рисунка на координатной плоскости с помощью шаблонов и линейки.

2.5. Построение рисунка с помощью пособия «Учебное электронное издание математика 5-11».

3. Представление результатов работы группы.

Выбранный для просмотра документ Презентация. Построение рисунков с помощью графиков. Ржевская Диана, сош 31.pptx

Рисунки с помощью графиков уравнений

Описание презентации по отдельным слайдам:

Рисунки с помощью графиков уравнений

Выполнила РЖЕВСКАЯ ДИАНА ученица 9 А класса БОУ СОШ № 31 МО Динской район Руководитель проекта Баранова М.Н. учитель математики БОУ СОШ № 31 МО Динской район XXV районная научно-практическая конференция учащихся 9-11 классов Построение рисунков с помощью графиков функций

Рисунки с помощью графиков уравнений

Графики живых организмов

Рисунки с помощью графиков уравнений

Берёзовый долгоносик вырезает из листа колыбельку для своего детёныша в форме эволюты

Рисунки с помощью графиков уравнений

Форму логарифмической спирали имеют: галактика, паутина паука, раковина улитки, рога козлов,…

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Использование графиков в деятельности человека

Рисунки с помощью графиков уравнений

Использование оптического свойства параболы

Рисунки с помощью графиков уравнений

Всякий ли объект может быть описан с помощью уравнений графиков функций? Гипотеза:

Рисунки с помощью графиков уравнений

Доказать, что любой объект можно описать с помощью уравнений графиков функций. Цель работы:

Рисунки с помощью графиков уравнений

Изучение теоретического материала по темам «Графики функций», «Преобразования графиков функций». Построение рисунков по заданным уравнениям графиков функций. Описание рисунка «Черепашка» с помощью уравнений графиков функций. Проверка правильности выполнения практических заданий с помощью компьютерной программы «Учебное электронное издание, математика 5-11». Задачи:

Рисунки с помощью графиков уравнений

Уравнение и график линейной функции: у=кх+в; график – прямая. Уравнение и график квадратичной функции: у=а(х-n)²+m; график – парабола. Преобразования графиков: перенос вдоль оси Ох и Оу. Поиск графиков, не изучаемых в школьном курсе. Изучение теоретического материала.

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Трёх лепестковая роза . Лемниската Бернулли

Рисунки с помощью графиков уравнений

Выполнение практической работы №1 «Построение рисунков с помощью графиков функций» и проверка её результатов с помощью компьютерной программы «Учебное электронное издание, математика 5-11». Построение рисунков по заданным уравнениям графиков функций.

Рисунки с помощью графиков уравнений

1.у = (-4/27)х² +6, х є [0;9]; 2.у = (1/9)(х – 7)² — 4, х є [-2;7]; 3.у = -0,5(х + 2)² + 8,x є [-4;0]; 4.у = (-1/16)(х + 2)² +5, x є [-6;2]; 5.y = x + 10, x є [-6;-4]; 6.y = -x = 3, x є [7;9]; 7.y = 0.5x – 1, x є [-6;1]; 8.y = 0.5x – 2.5, x є [-5;2]. Задание №1. построить рисунок «Птица» по заданным уравнениям графиков функций:

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

Практическая работа №2 «Описание рисунка «Черепашка» с помощью уравнений графиков функций».

Рисунки с помощью графиков уравнений

Найдем координаты точек А1 и В1 в системе координат О1х1у1 А1(-2,6;-1), В1(0;0) -1,3=а*(-2,6)2 -1=а*6,76 а=-1/6,76=-100/676=-50/338=-25/169 у=-25/169 х2 Найдем координаты вершины В1 в системе координат Оху (9;11,8) у=-25/169(х-9)2+11,8 Промежуток [6,4; 10,8] Фрагмент рисунка напоминает параболу.

Рисунки с помощью графиков уравнений

Этот участок напоминает прямую. А2(х2;у2) ; А4(х4;у4) А2(14,6; 6,8) ; А4(14,9; 6) у=(х-х2)(у4-у2)/(х4-х2)+у2 у=(х-14,6)(6-6,8)/(14,9-14,6)+6,8 Промежуток [14,6; 14,9] Фрагмент рисунка А2А4

Рисунки с помощью графиков уравнений

С помощью программы «Учебное электронное издание математика 5-11 » получен рисунок «Черепашка».

Рисунки с помощью графиков уравнений

Вывод: Любой объект можно описать с помощью уравнений графиков функций.

Рисунки с помощью графиков уравнений

Рисунки с помощью графиков уравнений

ученными было установлено, что с помощью математических уравнений можно описать движение животного (кошки). Почти 40 лет назад, 1968 год… Группа под руководством Николая Николаевича Константинова создает математическую модель движения животного (кошки).Машина БЭСМ-4, выполняя написанную программу решения обыкновенных (в математическом смысле слова) дифференциальных уравнений, рисует мультфильм «Кошечка», содержащий даже по современным меркам удивительную анимацию движений кошки, созданную компьютером. При изучении теоретического материала, я узнала, что

Рисунки с помощью графиков уравнений

Выбранный для просмотра документ Проектная работа. Построение рисунков. Ржевская Диана. сош 31.docx

XXV районная научно-практическая конференция

школьников Динского района

Построение рисунков с помощью графиков функций.

ученица 9а класса

МО Динской район.

МО Динской район

к работе по теме «Построение рисунков с помощью графиков функций» ученицы 9а класса БОУ СОШ №31 МО Динской район

Тема работы «Построение рисунков с помощью графиков функций» для школы актуальна. В работе раскрывается проблема: можно ли описать окружающие нас объекты с помощью графиков функций?

Цель работы: описать рисунок «Черепашка» с помощью уравнений графиков функций.

Для этого ученицей изучен теоретический материал по темам «Графики элементарных функций», «Преобразования графиков функций». Найден дополнительный иллюстративный материал по теме работы.

Цель практической работы №1 – отработка навыков построения графиков. Её выполнение позволило ученице применить свои теоретические знания на практике при построении рисунков.

В практической работе №2 Диана самостоятельно описала рисунок «Черепашка» с помощью уравнений графиков функций (линейной и квадратичной). Проверила правильность выполнения всех заданий практических работ с помощью программы «Учебное электронное издание математика 5-11» /Дрофа –ДОС для НФПК/.

Цель работы достигнута. Рисунок «Черепашка» описан с помощью графиков функций. Сделан вывод о том, что при выполнении рисунка достаточно использовать лишь линейные функции.

Учитель математики БОУ СОШ №31

МО Динской район М.Н. Баранова

Практическая работа №1 «Построение рисунков с помощью графиков функций»……………………………………………………………..5

3. Практическая работа №2 «Создание рисунка «Черепашка» и описание его с помощью уравнений графиков функций»………………………………8

Е) Приложение №6 (шаблоны графиков функций)………………………27

Функция – это одно из основных математических понятий, выражающее зависимость между переменными [1].

График функции – это один из способов представления функции. Представить какую-либо функцию можно разными способами. Например, табличным или графическим [1].

Табличный способ предпочитают тогда, когда трудно вычислять значения функции [1].

Графический способ представления функции – самый наглядный. График функции – это линия, дающая цельное представление о характере изменения её уравнения [1].

В школьной программе мы изучаем самые простейшие графики и их преобразования.

Помимо графиков функций, изучаемых нами в школе, существую и другие, интересные и «красивые» графики. Например, кардиоида, астроида, декартов лист, лемниската Бернули, спираль Архимеда и другие (Приложение №1) [2].

Живая природа демонстрирует нам многочисленные графики живых организмов. Например, березовый долгоносик, изготовляя колыбельку для своего детёныша, на листке вырезает эволюту. Паук плетёт паутину, которая выглядит как логарифмическая спираль [3].

Если взглянуть на форму многих галактик, то можно обнаружить, что некоторые из них имеют форму логарифмической спирали. Галактика млечный путь – типичная спиральная галактика [3]. (Приложение 2).

Но форму логарифмической спирали имеют не только объекты астрономии, но и, например: рога козлов, паутина, ракушки многих улиток, расположение семечек в цветке подсолнуха. Так же широкое применение нашла логарифмическая спираль в экономике [3].

Так же было установлено, что с помощью математических уравнений можно описать движение. Так, существуют математические уравнения колебания струны, математического маятника и другие.

Почти 40 лет назад, 1968 год… группа под руководством Николая Николаевича Константинова создает математическую модель движения животного (кошки). Машина БЭСМ -4, выполняя написанную программу решения обыкновенны (в математическом смысле слова) дифференциальных уравнений, рисует мультфильм «Кошечка» (Приложение№3), содержащий даже по современным меркам удивительную анимацию движений кошки, созданную компьютером.

В этой работе рассматриваются различные элементарные функции. Работа включает в себя две практические работы: «Построение рисунков с помощью графиков функций», «Создание композиции «Черепашка» и описание её с помощью уравнений графиков функций».

Я представляю два варианта выполнения рисунков: ручной и электронный. Электронный вариант осуществлён с помощью программы «Учебное электронное издание математика 5-11».

Цель этих практических работ: применение навыков построения, преобразования графиков функций при создании рисунков и применение навыков преобразования графиков функций при составлении композиции.

Практическая работа №1

Тема: «Построение рисунков с помощью графиков функций».

Цель работы: применение навыков построения графиков.

Оборудование: шаблоны графиков функций, линейка, карандаш, «Учебное электронное издание математика 5-11».

Построить рисунок «Птица» [4] по заданным уравнениям графиков функций:

📸 Видео

7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Зонтик в Excel. Тренируемся создавать графики в ExcelСкачать

Зонтик в Excel. Тренируемся создавать графики в Excel

Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать

Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.

Решение графических задач на тему Газовые законыСкачать

Решение графических задач на тему Газовые законы

Без этого НЕ ПОСТРОИТЬ ГРАФИК ФУНКЦИИ — Преобразование графиков функцийСкачать

Без этого НЕ ПОСТРОИТЬ ГРАФИК ФУНКЦИИ — Преобразование графиков функций

Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Как построить график линейной функции.Скачать

Как построить график линейной функции.

Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Построение графика функции с помощью элементарных преобразованийСкачать

Построение  графика функции с помощью элементарных преобразований

Графический метод решения систем линейных уравнений 7 классСкачать

Графический метод решения систем линейных уравнений 7 класс

Урок 13. Применение производной к построению графиков функций. Алгебра 11 классСкачать

Урок 13. Применение производной к построению графиков функций. Алгебра 11 класс

Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурокСкачать

ГРАФИК ЛИНЕЙНОГО УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС видеоурок

Построение графиков рациональных функций | Сложение графиковСкачать

Построение графиков рациональных функций | Сложение графиков
Поделиться или сохранить к себе: