1. Представить ход решения уравнения в Excel. Корни отделить графическим методом.
Уравнение представим в видеf(x)=
Начинаем работу с введения уравнения x^3+2*x^2=sin(2*x+1).Затем вводим значения x.-10…10.Рядом в соседний столбец С, вводим значения f(x).=B3^3+2*B3^2-SIN(2*B3+1).Получаем число. Растягиваем до 10. Затем все значения выделяем и устанавливаем точность, в нашем случае точность 10Пі. Для этого заходим в формат-ячейки-числовой и устанавливаем число десятичных знаков.
По таблице определяем интервалы значения x, внутри которых значение функции пересекает ось абсцисс т.е . функция меняет знак . Таких интервалов три:
[-3; -2]-первый корень
[-1; 0]-второй корень.
[0 ; 1]-третий корень.
Найдём корни уравнения, используя сервис Подбор параметра. Выбираем команду меню- Сервис —
Подбор параметра и в диалоговом окне заполняем следующие поля:
Установить в ячейке: в поле ввести адрес ячейки, содержащей формулу для вычисления значения функции.
Значение: в поле значение, в нашем случае 0.
Изменяя значение: в поле указывается адрес ячейки, где записано начальное значение и которой будет находиться найденный корень уравнения.
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Применение табличного процессора Excel для графического решения уравнений n-й степени
Цели урока:
- Формирование умений и навыков, носящих в современных условиях общенаучный и обще интеллектуальный характер.
- Развитие у школьников теоретического, творческого мышления, а также формирование операционного мышления, направленного на выбор оптимальных решений.
- Научить учащихся применять современное программное обеспечение в решении нестандартных задач.
- Повторение пройденного материала.
Задачи урока:
- Воспитательная – развитие познавательного интереса, воспитание информационной культуры.
- Учебная – изучить и закрепить основные навыки работы с электронными таблицами.
- Развивающая – развитие логического мышления, расширение кругозора.
Оборудование: персональные компьютеры (ПК), раздаточный материал, доска, маркеры, проектор.
План урока
- Организационный момент.
- Фронтальный опрос для проверки уровня подготовки учащихся к усвоению нового материала.
1) Какие дополнительные возможности есть у программы Excel?
2) Как вы понимаете термин деловая графика?
3) Какими возможностями для создания деловой графики обладает Excel?
4) При помощи какой команды меню можно построить диаграммы и графики в Excel?
5) Как задать автоматическое вычисление в таблице значений ячеек по определенной формуле?
6) Каким образом можно занести формулу в несколько ячеек, т.е. скопировать ее?
Ход урока
1. Организационный момент.
2. Фронтальный опрос.
1) Для чего нужна программа Excel?
Ответ: для создания таблиц, вычисляемых таблиц, диаграмм и графиков (деловой графики).
2) Какими возможностями для создания деловой графики обладает Excel?
Ответ: с помощью библиотеки диаграмм можно составлять диаграммы и графики разных видов (гистограммы, круговые диаграммы, столбчатые, графики и др.), их можно снабжать заголовками и пояснениями, можно задавать цвет и вид штриховки в диаграммах, редактировать их, печатать их на бумаге, изменяя размеры и расположение на листе, вставлять диаграммы в нужное место листа.
3) При помощи какой команды меню можно построить диаграммы и графики в Excel?
Ответ: с помощью вызова Мастера диаграмм (по команде Вставка-Диаграмма или с помощью кнопки Мастер диаграмм).
4) Как задать автоматическое вычисление в таблице значений ячеек по определенной формуле?
Ответ: активизировать нужную ячейку, затем ввести знак «=» и формулу, которая может содержать адреса ячеек, знаки арифметических операций и функции. Контролировать и редактировать ввод формулы можно с помощью строки ввода формулы, которая расположена в верхней части окна программы.
5) Каким образом можно занести формулу в несколько ячеек, т.е. скопировать ее.
Ответ: ввести формулу в ячейку, установить курсор на нижнем правом маркере ячейки (при этом курсор должен принять вид маленького черного крестика) и протянуть его до последней ячейки в нужном диапазоне.
3. Объяснение нового материала (проводится одновременно с работой учеников на компьютерах синхронно с учителем).
Тема урока «Применение табличного процессора Excel для графического решения уравнений n-ой степени».
Из курса математики нам известно, что корнями уравнения являются значения точек пересечения графика функции (то есть нашего уравнения) с осью абсцисс. Если же мы решаем систему уравнений, то ее решениями будут координаты точек пересечения графиков функций. Этот метод нахождения корней называется графическим. На прошлом занятии мы узнали, что с помощью программы Excel можно строить практически любые графики. Воспользуемся этими знаниями для нахождения корней системы уравнений графическим методом.
Для примера рассмотрим решение следующей системы уравнений:
Y — X 2 = 0
Y – 2X = 9
Преобразуем данную систему в приведенную:
Y = X 2
Y = 2X + 9
Для оценки решений воспользуемся диаграммой, на которой отобразим графики обеих функций. Сначала построим таблицу 1 (рисунок 1).
- Первая строка – строка заголовков. Далее для построения таблицы используем формулы.
- При заполнении столбца А: в ячейку А2 заносится начальное значение аргумента Х=-10, для автоматического заполнения всего столбца нужно в ячейку А3 занести формулу А2+1 и скопировать ее до ячейки А23.
- При заполнении столбца В в ячейку В2 заносится формула А2*А2, которая затем копируется до ячейки В23.
- При заполнении столбца С в ячейку С2 заносится формула 2*А2+9, и также копируется до С23.
- Выделяем таблицу вместе со строкой заголовка и помощью мастера диаграмм выберем тип диаграмм Точечная и построим черновую диаграмму первоначальной оценки решений.
- Вводим заголовок «Диаграмма оценки решения» и обозначения осей x, y (поле ввода текста).
- Добавляем основные линии сетки по оси X и по оси Y (выставляем флажки).
- Размещаем легенду справа от графиков (выставляем флажок «добавить легенду» и включаем переключатель «размещение справа»).
- Размещаем графики на имеющемся листе.
- Подписываем лист 1 «Диаграмма оценки решения» (рисунок 2).
Диаграмма оценки решения
На диаграмме видно, что оба графика имеют точки пересечения – эти координаты точек и есть решения системы. Так как шаг изменения аргумента был достаточно велик, то мы получили приближенные значения решений. Уточним их, построив два графика в интервалах от –3 до 0, где находится первое решение, и от 3 до 5 – где находится второе. Составим новые таблицы.
Для первого решения (таблица 2, рисунок 3).
- При заполнении столбца А: в ячейку А2 заносится начальное значение аргумента Х=-3, для автоматического заполнения всего столбца нужно в ячейку А3 занести формулу А2+0,1(в этом случае мы уменьшаем шаг изменения аргумента для более точного построения) и скопировать ее до ячейки А23.
- При заполнении столбца В в ячейку В2 заносится формула А2*А2, которая затем копируется до ячейки В23.
- При заполнении столбца С в ячейку С2 заносится формула 2*А2+9, и также копируется до С23.
- Выделяем таблицу вместе со строкой заголовка и помощью мастера диаграмм
- выберем тип диаграмм Точечная и построим диаграмму для первого решения.
- Вводим заголовок «Первое решение» и обозначения осей x, y (поле ввода текста).
- Добавляем основные линии сетки по оси X и по оси Y (выставляем флажки).
- Размещаем легенду справа от графиков (выставляем флажок «добавить легенду» и включаем переключатель «размещение справа»).
- Размещаем графики на имеющемся листе.
- Подписываем лист 2 «Первое решение» (рисунок 4).
Первое решение
4. Самостоятельная работа.
Для второго решения ребята самостоятельно строят таблицу (таблица 3, рисунок 5), выбрав правильно промежуток. Затем по таблице строят диаграмму для второго решения (рисунок 6). Учитель проходит и проверяет правильность выполнения работы. И если нужна помощь, то в индивидуальном порядке оказывает ее.
Второе решение
Решением нашей системы будут координаты точек пересечения графиков: X1=-2,1; Y1=4,8; X2=4,2; Y2=17,4.
Как вы уже поняли, графическое решение системы дает приблизительные результаты.
5. Сравнение результатов, полученных графическим способом (Excel) и аналитическим (Qbasic).
Учитель предлагает решить данную систему уравнений аналитическим способом, используя ранее полученную на уроках информатики программу решения квадратного уравнения. К доске приглашается ученик, который преобразует систему в квадратное уравнение:
Выделяем коэффициенты a, b, c, (a=1, b=-2,c=-9) и подставляем в программу (ребята открывают программу, которая была составлена ранее на уроках программирования).
REM Решение квадратного уравнения
INPUT «Введите коэффициенты a, b, с»; a, b,c
d= b^2-4*a*c
IF d 2
Y=4X+12
2. C помощью табличного процессора Excel решить графически систему:
3. C помощью табличного процессора Excel решить графически систему:
4. C помощью табличного процессора Excel решить графически систему:
5. C помощью табличного процессора Excel решить графически систему:
6. C помощью табличного процессора Excel решить графически систему:
7. C помощью табличного процессора Excel решить графически систему:
8. C помощью табличного процессора Excel решить графически систему:
9. C помощью табличного процессора Excel решить графически систему:
10. C помощью табличного процессора Excel решить графически систему:
11. C помощью табличного процессора Excel решить графически систему:
12. C помощью табличного процессора Excel решить графически систему:
7. Подведение итогов.
8. Выставление оценок.
9. Домашнее задание.
Проанализировать и проверить свои индивидуальные задания и оформить отчеты на листочках.
Видео:Раздел: табличные процессоры. Заметка 1. Работа с ячейками в MS Excel.Скачать
Калькулятор Уравнений. Решение Уравнений Онлайн
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
🎦 Видео
ДВА БЫСТРЫХ СПОСОБА решения уравнения |x-2|=|x+5| ★ Как решать?Скачать
Как решить такое уравнение: (5^x)*(16^((x-1)/x))=100?Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Решение уравнений с помощью ExcelСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Решите уравнение ★ x^6-2x^5-x^4+3x^3+x^2-2x-1=0Скачать
Решение системы линейных алгебраических уравнений (СЛАУ) в Excel МАТРИЧНЫМ МЕТОДОМСкачать
Решите уравнение ➜ e^x=x ➜ Как решать такое уравнение?Скачать
Решить квадратное уравнение. MS Excel. Поиск решенияСкачать
Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать
Замени то, что не нравится ➜ Решите уравнение: √(5-x)=x²-5Скачать
Как найти корни уравнения в Excel с помощью Подбора параметраСкачать
Решение уравнений, 6 классСкачать
Решить уравнение - Математика - 6 классСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Простое решение сложного уравнения ➜ Решите уравнение ➜ x⁴-2x³-13x²+14x-3=0Скачать