Знание — сила. Познавательная информация
Видео:Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
cosx=1
Эта ассоциация позволяет легко запомнить формулу для решения частного случая тригонометрического уравнения cosx=1.
Как и другие частные случаи косинуса, решение уравнения cosx=1 удобнее всего рассматривать на единичной окружности.
Ассоциация прежняя: косинус-колобок . И начинаются они одинаково, на ко-, и округлые буквы в его названии: c, o, s.
А колобку с его фигурой удобно двигаться вправо-влево, но никак не вверх-вниз. Влево-вправо у нас движение по оси ox, а значит, косинус — это x.
Нам нужны точки, в которых x равен 1, поэтому идем вправо. Попадаем в 0. Это только одна из точек, в которой cosx=1.
Через полный оборот окружности мы снова попадем в точку, в которой косинус равен единице.
Если идти против часовой стрелки, этой следующей точкой будет 2π, по часовой стрелке — -2π. Через 2,3,4 и т.д. оборота мы снова попадаем в точки, в которых cosx=1.
Чтобы учесть все такие точки, 2π умножаем на n, где n — целое число. Таким образом, окончательно имеем: если cosx=1, то x=0+2πn, или просто x=2πn.
Видео:Решите уравнение ★ cosx+sinx=1 ★ Как решать простые уравнения?Скачать
Решение уравнения sin x — cos x = 1. Урок-семинар
Разделы: Математика
Цели урока:
Главная дидактическая цель: рассмотреть все возможные способы решения данного уравнения.
Обучающие: изучение новых приемов решения тригонометрических уравнений на примере данного в творческой ситуации урока-семинара.
Развивающие: формирование общих приемов решения тригонометрических уравнений; совершенствование мыслительных операций учащихся; развитие умений и навыков устной монологической математической речи при изложении решения тригонометрического уравнения.
Воспитывающие: развивать самостоятельность и творчество; способствовать выработке у школьников желания и потребности обобщения изучаемых фактов.
Вопросы для подготовки и дальнейшего обсуждения на семинаре.
- Приведение уравнения к однородному относительно синуса и косинуса.
- Разложение левой части уравнения на множители.
- Введение вспомогательного угла.
- Преобразование разности (или суммы) тригонометрических функций в произведение.
- Приведение к квадратному уравнению относительно одной из функций.
- Возведение обеих частей уравнения в квадрат.
- Выражение всех функций через tg x (универсальная подстановка).
- Графическое решения уравнения.
Все учащиеся разбиваются на группы (по 2-4 человека) в зависимости от общего количества учащихся и их индивидуальных способностей и желания. Самостоятельно определяют для себя тему для подготовки и выступления на уроке-семинаре. Выступает один человек от группы, а остальные учащиеся принимают участие в дополнениях и исправлениях ошибок, если в этом возникнет необходимость.
Организационный момент.
Тема урока:
“Различные способы решения тригонометрического уравнения sin x — cos x = 1
Форма проведения: урок – семинар.
Эпиграф к уроку:
“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия. Задача, которую вы решаете, может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы”
Задачи урока:
а) рассмотреть возможность решения одного и того же уравнения различными способами;
б) познакомиться с различными общими приемами решения тригонометрических уравнений;
в) изучение нового материала (введение вспомогательного угла, универсальная подстановка).
План семинара
- Приведение уравнения к однородному относительно синуса и косинуса.
- Разложение левой части уравнения на множители.
- Введение вспомогательного угла.
- Преобразование разности (или суммы) тригонометрических функций в произведение.
- Приведение к квадратному уравнению относительно одной из функций.
- Возведение обеих частей уравнения в квадрат.
- Выражение всех функций через tg x (универсальная подстановка).
- Графическое решения уравнения.
Содержание.
1. Слово предоставляется первому участнику.
Приведение уравнения sin x — cos x = 1 к однородному относительно синуса и косинуса.
Разложим левую часть по формулам двойного аргумента, а правую часть заменим тригонометрической единицей, используя основное тригонометрическое тождество:
2 sin cos — cos + sin = sin + cos ;
2 sin cos — cos =0 ;
cos = 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
cos =0 ; =
= 0 — однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin — 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1).
Получим tg -1 = 0 ; tg = 1 ; =
Ответ:
2. Слово предоставляется второму участнику.
Разложение левой части уравнения sin x — cos x = 1 на множители.
sin x – (1+ cos x ) = 1; используем формулы 1+ cos x = 2 , получим ;
далее аналогично:
произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует
cos =0 ; =
= 0 — однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin — 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1)
Получим tg -1 = 0 ; tg = 1 ; =
Ответ:
3. Слово предоставляется третьему участнику.
Решение уравнения sin x — cos x = 1 введением вспомогательного угла.
Рассмотрим уравнение sin x — cos x = 1. Умножим и разделим каждое слагаемое левой части
уравнения на . Получим и вынесем в левой части уравнения за скобку. Получим ; Разделим обе части уравнения на и используем табличные значения тригонометрических функций. Получим ; Применим формулу синус разности.
;
Легко установить(с помощью тригонометрического круга), что полученное решение распадается на два случая:
;
Ответ:
4. Слово предоставляется четвертому участнику.
Решение уравнения sin x — cos x = 1 способом преобразования разности (или суммы) тригонометрических функций в произведение.
Запишем уравнение в виде , используя формулу приведения . Применяя формулу разности двух синусов, получим
;
и так далее, аналогично предыдущему способу.
Ответ:
5. Слово предоставляется пятому участнику.
Решение уравнения sin x — cos x = 1 способом приведения к квадратному уравнению относительно одной из функций.
Рассмотрим основное тригонометрическое тождество , откуда следует
подставим полученное выражение в данное уравнение.
sin x — cos x = 1 ,
Возведем обе части полученного уравнения в квадрат:
В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Выполним ее.
Полученные решения эквивалентны объединению трех решений:
Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Остается проверить третье решение Подставим.
Левая часть:
Получили: , следовательно, – постороннее решение.
Ответ:
6. Слово предоставляется шестому участнику.
Возведение обеих частей уравнения sin x — cos x = 1 в квадрат.
Рассмотрим уравнение sin x — cos x = 1. Возведем обе части данного уравнения в квадрат.
;
;
Используя основное тригонометрическое тождество и формулу синуса двойного угла, получим ; sin 2x = 0 ; .
Полученное решение эквивалентно объединению четырех решений:
(эти решения можно нанести на единичную окружность). Проверка показывает, что первое и четвертое решения — посторонние.
Ответ:
7. Слово предоставляется седьмому участнику.
Использование универсальной подстановки в решении уравнения sin x — cos x = 1. Выражение всех функций через tg x по формулам:
Запишем данное уравнение с учетом приведенных формул в виде .
,
получим
ОДЗ данного уравнения – все множество R. При переходе к из рассмотрения выпали значения, при которых не имеет смысла, т. е. или .
Следует проверить, не являются ли решениями данного уравнения. Подставим в левую и правую часть уравнения эти решения.
Левая часть: .
Получили 1=1. Значит, — решение данного уравнения.
Ответ:
8. Слово предоставляется восьмому участнику.
Рассмотрим графическое решение уравнения sin x — cos x = 1.
Запишем рассматриваемое уравнение в виде sin x = 1 + cos x.
Построим в системе координат Оxy графики функций, соответствующих левой и правой частям уравнения. Абсциссы точек пересечения графиков являются решениями данного уравнения.
y = sin x – график: синусоида.
y = cos x +1 – график: косинусоида y = cos x, смещенная на 1 вверх по оси Oy. Абсциссы точек пересечения являются решениями данного уравнения.
Ответ:
Итог урока.
- Учащиеся научились решать тригонометрические уравнения вида , освоили новый материал.
- На примере одного уравнения рассмотрели несколько способов решения.
- Учащиеся были непосредственными участниками урока, была задействована обратная связь в системе ученик-учитель.
- Учащиеся получили навыки самостоятельной работы с дополнительной литратурой.
Список использованной литературы:
- Татарченкова С.С. Урок как педагогический феномен – Санкт-Петербург: Каро, 2005
- Выгодский Н.В. Справочник по элементарной математике.-М.: Наука, 1975.
- Виленкин Н.Я. и др. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Книга для учащихся 10-11 класса – М.: Просвещение, 1996.
- Гнеденко Б.В. Очерки по истории математики в России – М.: ОГИЗ, 1946.
- Депман И.Я. и др. За страницами учебника математики – М.: Просвещение, 1999.
- Дорофеев Г.В. и др. Математика: для поступающих в вузы – М.: Дрофа, 2000.
- Математика: Большой энциклопедический словарь. – М.: БСЭ, 1998.
- Мордкович А.Г. и др. Справочник школьника по математике. 10-11кл. Алгебра и начала анализа. – М.: Аквариум, 1997.
- 300 конкурсных задач по математике. – М.: Рольф, 2000.
- 3600 задач по алгебре и началам анализа. – М.: Дрофа, 1999.
- Школьная программа в таблицах и формулах. Большой универсальный справочник. – М.: Дрофа, 1999.
- Торосян В.Г. История образования и педагогической мысли: учеб. для студентов вузов. — М.: Изд-во ВЛАДОС-ПРЕСС, 2006.- 351 с.
- Крылова Н.Б. Педагогическая, психологическая и нравственная поддержка как пространство личностных изменений ребёнка и взрослого.// Классный руководитель.- 2000.- №3. –С.92-103.
Видео:Решите уравнение ➜ sinx+cosx=1 ➜ 2 способа решенияСкачать
Решение уравнений cosx
Видео:Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравненСкачать
Решение уравнений cos(x)
— это абсцисса точки на единичной окружности, соответствующей углу .
cosx = 1
cosx = 1
На единичной окружности имеется лишь одна точка с абсциссой 1.
Эта точка соответствует бесконечному множеству углов: 0, , , , . Все они получаются из нулевого угла прибавлением целого числа полных углов . Все эти углы могут быть записаны одной формулой:
где, — множество целых чисел.
cosx = -1
cosx = -1
Снова, на единичной окружности есть всего лишь одна точка с абсциссой -1.
Эта точка соответствует углу и всем углам, отличающихся от на несколько полных оборотов в обе стороны.
cosx = 0
cosx = 0
Точки с абсциссой образуют на единичной окружности вертикальную диаметральную пару.
Все углы, отвечающие этим точкам, получаются из прибавлением целого числа (полуоборотов):
cosx = 1/2
Имеем вертикальную пару точек с абсциссой 1/2.
Все углы, соответствующие верхней точке, описываются формулой:
Все углы, соответствующие нижней точке, описываются формулой:
Обе формулы можно записать одной формулой:
Другие уравнения с косинусом
Остальные уравнения с косинусом решаются аналогично:
💡 Видео
Уравнение cos x равно 1 2Скачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Простейшие уравнения с cosx. cosx=√2/2; cosx=-1/2Скачать
К10 Решение уравнения cos x = 1Скачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
100 тренировочных задач #119. Решите уравнение: sinx-tg(π/10)∙cosx=1Скачать
Решить тригонометрическое уравнение sin x+cos x=1. Как решить? Самый простой метод решенияСкачать
Решите уравнение tg п(x-3)/6 = 1/корень из 3. В ответе напишите наибольший отрицательный корень.Скачать
Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать
Решите уравнение: tg пx/4 = -1 В ответе напишите наибольший отрицательный корень.Скачать
Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать
Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать
Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать
Отбор корней по окружностиСкачать