Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.
К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.
С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Видео:Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать
Калькулятор Уравнений. Решение Уравнений Онлайн
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Решение тригонометрических уравнений онлайн
В общем виде, тригонометрическое уравнение можно записать следующим образом:
f ( trig ( x ) ) = 0
где — некоторая произвольная функция, trig ( x ) — некоторая тригонометрическая функция.
Как правило, метод решения тригонометрических уравнений заключается в преобразовании исходного уравнения к более простому, решение которого известно. Преобразования осуществляются при помощи различных тригонометрических формул.
Например, рассмотрим решение тригонометрического уравнения:
Используя формулу косинуса двойного угла, преобразуем данное уравнение:
Полученное уравнение является простейшим и легко решается. Наш онлайн калькулятор, построенный на системе Wolfram Alpha способен решить более сложные тригонометрические уравнения с описанием подробного хода решения.
🔥 Видео
Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать
ЕГЭ профиль Задание 13 Тригонометрическое уравнение 2sin^2 (3π/2-x)=cosx, [-3π/2;0]Скачать
Решаем уравнение: cos2x-√2cos(3π/2+x)-1=0Скачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Решить тригонометрическое уравнение 2sin²x+cos4x-2=0. Самый простой метод решенияСкачать
Задача. Решите тригонометрическое уравнение: cos(2x) - 2cos(x) - 3 = 0Скачать
3C Решите уравнение: 4*cos(2x)+3*sin^2 (x) = cos^2 (x) - 4*sin(x)Скачать
Тригонометрическое уравнение, сводящееся к квадратному 3sin^2 2x+7cos2x-3=0Скачать
ЕГЭ профиль 13 задание Тригонометрическое уравнение cos2x-0,25+sin^2 x=0Скачать
а) Решите уравнение sin2x-2sin(-x)-cos(-x)-1=0.б) Найдите все корни уравнения, принадлежащие отрезкуСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Решить тригонометрическое уравнение 2cos²x-5cos x+2=0. Как решить? Самый простой метод решенияСкачать
Математика а) Решите уравнение Cosx+(3)^(1/2) Sin(3П/2-x/2)+1=0 б) Укажите корни этого уравненияСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Математика а) Решите уравнение 2Sin^2 (3П/2+x)=(3^(1/2)) Cosx б) Найдите все корни этого уравненияСкачать
Математика а) Решите уравнение √2 Sin(x-3П/2)Cos(3П/2+x) +Cosx =0 б) Найдите все корниСкачать
Как решать тригонометрическое уравнение cos^2 x =1/2 Уравнение с косинусом в квадрате Решите уравненСкачать