- Условие
- Решение
- Задание 13. ЕГЭ. Решите уравнение cos2x-sin2x=cosx+sinx+1
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение тригонометрических уравнений.
- Немного теории.
- Тригонометрические уравнения
- Уравнение cos(х) = а
- Уравнение sin(х) = а
- Уравнение tg(х) = а
- Решение тригонометрических уравнений
- Уравнения, сводящиеся к квадратным
- Уравнение вида a sin(x) + b cos(x) = c
- Уравнения, решаемые разложением левой части на множители
- Школе NET
- Register
- Login
- Newsletter
- Васян Коваль
- Решить уравнение cos2x=sin(x pi/2). Найдите корни этого уравнения, принадлежащие промежутку [-2pi;-pi]
- 🎥 Видео
Условие
a) cos2x=sin(x+Pi/2)
б) Найдите корни этого уравнения, принадлежащего промежутку [-2pi; -pi]
Промежутки найти по окружности
Решение
а)По формулам приведения
sin(x+(π/2))=cosx
По формуле косинуса двойного угла
cos2x=2cos^2x-1
Уравнение принимает вид
2cos^2x-cosx-1=0
Квадратное уравнение
D=1+8=9
cosx=-1/2 или cosx=1
x=± (2π/3)+2πk, k∈Z или x=2πn, n∈Z
а) О т в е т. ± (2π/3)+2πk, k∈Z или x=2πn, n∈Z.
б) -4π/3; -2π — корни, принадлежащие указанному промежутку.
Скажите , пожалуйста , а почему там -4pi/3 , а не -2pi/3
Потому что они -2π > -4π/3 > -π А -π Ошибки в решение (1)
Видео:Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Задание 13. ЕГЭ. Решите уравнение cos2x-sin2x=cosx+sinx+1
Задание. а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку [-5п/2; -п].
Решение:
а) Решите уравнение
ОДЗ уравнения: R
Используя формулу косинуса двойного угла cos2α = cos 2 α – sin 2 α, формулу синуса двойного угла sin2α = 2sinα·cosα, основное тригонометрическое тождество cos 2 α + sin 2 α = 1, преобразуем уравнение:
Воспользуемся методом группировки:
Уравнение состоит из двух множителей. Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом не теряет смысла, т. е.
Решим первое уравнение:
Получили однородное тригонометрическое уравнение первой степени. Так как sinx и cosx обращаются в нуль в различных точках, т. е. не могут быть одновременно равными нулю, то можно обе части уравнения разделить на cosx:
Решим второе уравнение:
б) Найдите все корни этого уравнения, принадлежащие отрезку [-5п/2; -п].
Выберем корни уравнения при помощи единичной окружности
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:cos2x=1-cos(p/2-x) тригонометрическое уравнение из ДЕМОварианта ЕГЭСкачать
Калькулятор онлайн.
Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите тригонометрическое уравнение
Решить уравнение
Видео:Математика а) Решите уравнение Sin(П-x)-Cos(П/2+x)=-1 б) Укажите корни этого уравнения принадлежащиеСкачать
Немного теории.
Видео:Математика а) Решите уравнение |Cosx+Sinx|=√2 Sin2x. б) Найдите решение уравнения, принадлежащиеСкачать
Тригонометрические уравнения
Видео:Отбор корней по окружностиСкачать
Уравнение cos(х) = а
Из определения косинуса следует, что ( -1 leqslant cos alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где ( |a| leqslant 1 ), имеет на отрезке ( 0 leqslant x leqslant pi ) только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если a
Видео:Найдите корни уравнения: cosπ(x−7)/3=1/2 В ответ запишите наибольший отрицательный корень.Скачать
Уравнение sin(х) = а
Из определения синуса следует, что ( -1 leqslant sin alpha leqslant 1 ). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где ( |a| leqslant 1 ), на отрезке ( left[ -frac; ; frac right] ) имеет только один корень. Если ( a geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right] ); если а
Видео:Математика а) Решите уравнение 2Sin(п+x) Cos(п/2+x) = Sinx б) Найдите все корни этого уравненияСкачать
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале ( left( -frac; ; frac right) ) только один корень. Если ( |a| geqslant 0 ), то корень заключён в промежутке ( left[ 0; ; frac right) ); если а
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Видео:Решение уравнения a*sin^2(x)+b*sin(x)*cos(x)+c*cos^2(x)=0Скачать
Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos 2 (х) — 5 sin(х) + 1 = 0
Заменяя cos 2 (х) на 1 — sin 2 (х), получаем
2 (1 — sin 2 (х)) — 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) — 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y — 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = — 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; ( x = (-1)^n text(0,5) + pi n = (-1)^n frac + pi n, ; n in mathbb )
Ответ ( x = (-1)^n frac + pi n, ; n in mathbb )
Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) — 4 = 0
Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 — sin 2 (6х)) + 4 sin(6х) — 4 = 0 => 3 sin 2 (6х) — 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 — 4y +1 =0, откуда y1 = 1, y2 = 1/3
Видео:Тригонометрические уравнения sin2x=√2/2; cos x/3=-1/2Скачать
Уравнение вида a sin(x) + b cos(x) = c
Решить уравнение 2 sin(x) + cos(x) — 2 = 0
Используя формулы ( sin(x) = 2sinfrac cosfrac, ; cos(x) = cos^2 frac -sin^2 frac ) и записывая правую часть уравпения в виде ( 2 = 2 cdot 1 = 2 left( sin^2 frac + cos^2 frac right) ) получаем
Поделив это уравнение на ( cos^2 frac ) получим равносильное уравнение ( 3 text^2frac — 4 textfrac +1 = 0 )
Обозначая ( textfrac = y ) получаем уравнение 3y 2 — 4y + 1 = 0, откуда y1=1, y1= 1/3
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях ( a neq 0, ; b neq 0, ; c neq 0, ; c^2 leqslant b^2+c^2 ) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на ( sqrt ):
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, ( sqrt = 5 ). Поделим обе части уравнения на 5:
Видео:Математика а) Решите уравнение Cos^2(x/2)-Sin^2(x/2)=Sin(П/2-2x) б) Укажите корни уравненияСкачать
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Решить уравнение sin(2х) — sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) — sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x — 1) = 0
Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х — х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0
Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) — sin 2 (x), то
cos(2x) = 1 — sin 2 (x) — sin 2 (x), cos(2x) = 1 — 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 — cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 — cos(2x)) + 2 (1 — cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0
Видео:Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
- Главная
- Вопросы & Ответы
- Вопрос 3278794
Васян Коваль
Видео:Нахождение корней уравнения, принадлежащих промежуткуСкачать
Решить уравнение cos2x=sin(x pi/2). Найдите корни этого уравнения, принадлежащие промежутку [-2pi;-pi]
🎥 Видео
ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать
Решите уравнение ➜ sinx+cosx=1 ➜ 2 способа решенияСкачать
Профильный ЕГЭ по математике, задача 13 из демонстрационного варианта (тригонометрическое уравнение)Скачать
Математика Дано уравнение (2v3(Cosx)^2+Sinx)/(2Cosx-1 )=0 а) Решите уравнение. б) Найдите корниСкачать
Математика а) Решите уравнение: 2Cos(п/2 – x) = tgx. б) Укажите корни этого уравнения, принадлежащиеСкачать
Математика а) Решите уравнение (1-Cos2x)Sin2x = 3^(1/2) (Sinx)^2 б) Укажите корни этого уравненияСкачать